Keywords: unconstrained optimization; large-scale optimization; minimax optimization; nonsmooth optimization; interior-point methods; modified Newton methods; variable metric methods; computational experiments
@article{KYB_2009_45_5_a10,
author = {Luk\v{s}an, Ladislav and Matonoha, Ctirad and Vl\v{c}ek, Jan},
title = {Primal interior-point method for large sparse minimax optimization},
journal = {Kybernetika},
pages = {841--864},
year = {2009},
volume = {45},
number = {5},
mrnumber = {2599116},
zbl = {1198.90394},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a10/}
}
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan. Primal interior-point method for large sparse minimax optimization. Kybernetika, Tome 45 (2009) no. 5, pp. 841-864. http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a10/
[1] J. R. Bunch and B. N. Parlett: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8 (1971), 639–655. | MR
[2] R. H. Byrd, J. Nocedal, and R. A. Waltz: KNITRO: An integrated package for nonlinear optimization. In: Large-Scale Nonlinear Optimization (G. di Pillo and M. Roma, eds.), Springer, Berlin 2006, pp. 35–59. | MR
[3] R. Fletcher: Practical Methods of Optimization. Second edition. Wiley, New York 1987. | MR | Zbl
[4] R. Fletcher and E. Sainz de la Maza: Nonlinear programming and nonsmooth optimization by successive linear programming. Math. Programming 43 (1989), 235–256. | MR
[5] Y. Gao and X. Li: Nonsmooth equations approach to a constrained minimax problem. Appl. Math. 50 (2005), 115–130. | MR
[6] P. E. Gill and W. Murray: Newton type methods for unconstrained and linearly constrained optimization. Math. Programming 7 (1974), 311–350. | MR
[7] P. E. Gill, W. Murray, and M. A. Saunders: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47 (2005), 99–131. | MR
[8] A. A. Goldstein: On steepest descent. SIAM J. Control 3 (1965), 147–151. | MR | Zbl
[9] A. Griewank: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia 2000. | MR | Zbl
[10] A. Griewank and P. L. Toint: Partitioned variable metric updates for large-scale structured optimization problems. Numer. Math. 39 (1982), 119–137. | MR
[11] S. P. Han: Variable metric methods for minimizing a class of nondifferentiable functions. Math. Programming 20 (1981), 1–13. | MR | Zbl
[12] K. Jónasson and K. Madsen: Corrected sequential linear programming for sparse minimax optimization. BIT 34 (1994), 372–387. | MR
[13] D. Le: Three new rapidly convergent algorithms for finding a zero of a function. SIAM J. Sci. Statist. Comput. 6 (1985), 193–208. | MR | Zbl
[14] D. Le: An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Software 11 (1985), 250–262. | MR | Zbl
[15] L. Lukšan, C. Matonoha, and J. Vlček: Interior point method for nonlinear nonconvex optimization. Numer. Linear Algebra Appl. 11 (2004), 431–453. | MR
[16] L. Lukšan, C. Matonoha, and J. Vlček: Nonsmooth equation method for nonlinear nonconvex optimization. In: Conjugate Gradient Algorithms and Finite Element Methods (M. Křížek, P. Neittaanmäki, R. Glovinski, and S. Korotov, eds.), Springer Verlag, Berlin 2004. | MR
[17] L. Lukšan, M. Tůma, J. Hartman, J. Vlček, N. Ramešová, M. Šiška, and C. Matonoha: Interactive System for Universal Functional Optimization (UFO), Version 2006. ICS AS CR Report No. V-977, Prague, 2006.
[18] L. Lukšan and E. Spedicato: Variable metric methods for unconstrained optimization and nonlinear least squares. J. Comput. Appl. Math. 124 (2000), 61–93. | MR
[19] L. Lukšan and J. Vlček: Sparse and Partially Separable Test Problems for Unconstrained and Equality Constrained Optimization, ICS AS CR Report No. V-767, Prague 1998.
[20] E. Polak, J. O. Royset, and R. S. Womersley: Algorithm with adaptive smoothing for finite minimax problems. J. Optim. Theory Appl. 119 (2003), 459–484. | MR
[21] J. Vanderbei and D. F. Shanno: An interior point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13 (1999), 231–252. | MR
[22] S. Xu: Smoothing methods for minimax problems. Comput. Optim. Appl. 20 (2001), 267–279.