Keywords: generalized semiflow; chaos; symbolic dynamics
@article{KYB_2009_45_5_a1,
author = {Beran, Zden\v{e}k},
title = {On characterization of the solution set in case of generalized semiflow},
journal = {Kybernetika},
pages = {701--715},
year = {2009},
volume = {45},
number = {5},
mrnumber = {2599107},
zbl = {1190.93036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a1/}
}
Beran, Zdeněk. On characterization of the solution set in case of generalized semiflow. Kybernetika, Tome 45 (2009) no. 5, pp. 701-715. http://geodesic.mathdoc.fr/item/KYB_2009_45_5_a1/
[1] J.-P. Aubin and A. Cellina: Differential inclusions, set-valued maps and viability theory. (Grundlagen Math. Wiss. 264.) Springer–Verlag, Berlin 1984. | MR
[2] J. M. Ball: Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations. Nonlinear Sci. 7 (1997), 475–502. Erratum, ibid 8 (1998), 233. | MR | Zbl
[3] N. P. Bhatia and G. P. Szegö: Stability Theory of Dynamical Systems. Springer-Verlag, Berlin 1970. | MR
[4] G. Chen and T. Ueta: Yet another chaotic attractor. Internat. J. Bifurcation Chaos 9 (1999), 1465–1466. | MR
[5] S. Čelikovský and G. Chen: On a generalized Lorenz canonical form. Chaos, Solitons and Fractals 26 (2005), 1271–1276. | MR
[6] S. Čelikovský and G. Chen: On a generalized Lorenz canonical form of chaotic systems. Internat. J. Bifurcation Chaos, in press.
[7] S. Čelikovský and A. Vaněček: Bilinear systems and chaos. Kybernetika 30 (1994), 403–424.
[8] J. H. Curry: A generalized Lorenz system. Commun. Math. Phys. 60, (1978), 193–204. | MR | Zbl
[9] S. Day: A Rigorous Numerical Method in Infinite Dimensions. PhD Thesis, Georgia Institute of Technology 2003. | MR
[10] S. Day, Y. Hiraoka, K. Mischaikow, and T. Ogawa: Rigorous numerics for global dynamics: A study of the Swift–Hohenberg equation. SIAM J. Appl. Dynamical Systems 1 (2005), 4, 1–31. | MR
[11] S. Day, J.-P. Lessard, and K. Mischaikow: Validated continuation for equilibria of PDFs. to appear in SIAM J. Numer. Anal. 2007. | MR
[12] L. Dieci and T. Eirola. Numerical Dynamical Systems. School of Mathematics, Georgia Institute of Technology, Institute of Mathematics, Helsinky University of Technology 2005.
[13] J. Guckenheimer: A strange, strange attractor. In: The Hopf Bifurcation and Applications (Applied Math. Sciences 19, J. Marsden and J. McCracken, eds.), Springer–Verlag, Berlin 1976, pp. 368–381.
[14] T. Kaczynski, K. Mischaikow, and M. Mrozek: Computational Homology. (Appl. Math. Sci. Series 157.) Springer–Verlag, New York 2004. | MR
[15] A. Katok and B. Hasselbatt: Introduction to the Modern Theory of Dynamic Systems. Cambridge University Press, Cambridge 1997.
[16] J.-P. Lessard: Validated Continuation for Infinite Dimensional Problems. PhD Thesis, Georgia Institute of Technology 2007. | MR
[17] E. N. Lorenz: Deterministic nonperiodic flow. J. Atmospheric Sci. 20, (1963), 130–141.
[18] J. Lü and G. Chen: A new chaotic attractor coined. Internat. J. Bifurcation Chaos 3 (2002), 12, 659–661. | MR
[19] J. Lü, G. Chen, D. Cheng, and S. Čelikovský: Bridge the gap between the Lorenz system and the Chen system: Internat. J. Bifurcation Chaos 12 (2002), 12, 2917–2926. | MR
[20] J. Lü, G. Chen, and D. Cheng: A new chaotic system and beyond: the generalized Lorenz-like system. Internat. J. Bifurcation Chaos 5 (2004), 12, 1507–1537. | MR
[21] V. S. Melnik and J. Valero: On attractors of multivalued semi-flows and differential inclusions. Set-Valued Analysis 6 (1998), 83–111. | MR
[22] K. Mischaikow: Conley index theory: A brief introduction. In: Conley Index Theory, Banach Center Publication 1999. | MR | Zbl
[23] K. Mischaikow and M. Mrozek: Conley index, mathematical computation. In: Handbook of Dynamical Systems, Berlin, Elsevier 2002. | MR
[24] K. Mischaikow and M. Mrozek: Chaos in Lorenz equations: A computer assisted proof. Bull. Amer. Math. Soc. 32 (1995), 66–72. | MR
[25] K. Mischaikow and M. Mrozek: Chaos in Lorenz equations: A computer assisted proof. Part II: Details. Math. Computation 67 (1998), 1023–1046. | MR
[26] K. Mischaikow, M. Mrozek, and A. Szymczak: Chaos in Lorenz Equations: A Computer Assisted Proof. Part III: Classical Parameter Values, Research supported by NSF 9805584 and by KBN, Grant 2 P03A 029 12.
[27] H. Poincaré: Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars 1899. English translation: New Methods of Celestial Mechanics by D. Goroff, AIP Press.
[28] D. Ruelle and F. Takens: On the nature of the turbulence. Commun. Math. Phys. 20 (1963), 167–192. | MR
[29] J. C. Sprott: Some simple chaotic flows. Phys. Rev. E50 (1994), R647–R650. | MR
[30] J. C. Sprott: Strange Attractors: Creating Patterns in Chaos. M&T Books, New York 1993.
[31] A. M. Stuart and A. R. Humphries: Dynamical Systems and Numerical Analysis. Cambridge Univ. Press, Cambridge 1996. | MR
[32] R. Temam: Infinite-Dimensional Dynamical Systems. Springer, Berlin 1993. | MR | Zbl
[33] R. F. Williams: The structure of Lorenz attractors. Publ. Math. de l’I.H.É.S 50 (1979), 73–99. | MR | Zbl
[34] S. Wong: Newton’s method and symbolic dynamics. Proc. Amer. Math. Soc. 2 (1984), 91, 245–253. | MR | Zbl