Keywords: Allen–Cahn equation; anisotropic diffusion; finite volume method; MR–DTI; MR tractography; medical visualization
@article{KYB_2009_45_4_a9,
author = {Strachota, Pavel},
title = {Implementation of the {MR} tractography visualization kit based on the anisotropic {Allen-Cahn} equation},
journal = {Kybernetika},
pages = {657--669},
year = {2009},
volume = {45},
number = {4},
mrnumber = {2588631},
zbl = {1190.93100},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a9/}
}
Strachota, Pavel. Implementation of the MR tractography visualization kit based on the anisotropic Allen-Cahn equation. Kybernetika, Tome 45 (2009) no. 4, pp. 657-669. http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a9/
[1] M. Beneš: Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interfaces and Free Boundaries 3 (2001), 201–221. | MR
[2] M. Beneš: Diffuse-interface treatment of the anisotropic mean-curvature flow. Appl. Math. 48 (2003), 6, 437–453. | MR
[3] M. Beneš, V. Chalupecký, and K. Mikula: Geometrical image segmentation by the Allen–Cahn equation. Appl. Numer. Math. 52 (2004), 2, 187–205. | MR
[4] D. L. Bihan et al.: Diffusion tensor imaging: Concepts and applications. J. Magnetic Resonance Imaging 13 (2001), 534–546.
[5] W. F. Block et al.: Encyclopedia of Medical Devices and Instrumentation, chapter Magnetic Resonance Imaging. Second edition. Wiley, New York 2006, pp. 283–298.
[6] A. F. M. Dasilva et al.: A primer on diffusion tensor imaging of anatomical substructures. Neurosurgical Focus 15 (2003), 1–4.
[7] R. Eymard, T. Gallouët, and R. Herbin: Finite volume methods. In: Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.), volume 7, Elsevier, 2000, pp. 715–1022. | MR
[8] P. Fillard and G. Gerig: Analysis tool for diffusion tensor MRI. In: Proc. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer–Verlag, Berlin 2003, pp. 967–968.
[9] K. M. Hasan, D. L. Parker, and A. L. Alexander: Comparison of gradient encoding schemes for diffusion-tensor MRI. J. Magnetic Resonance Imaging 13 (2001), 769–780.
[10] W. Kahle, H. Leonhardt, and W. Platzer: Color Atlas and Textbook of Human Anatomy in 3 Volumes, volume 1: Locomotor System. Third edition. Georg Thieme Verlag, Stuttgart 1986.
[11] Z.-P. Liang and P. C. Lauterbur: Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. Wiley–IEEE Press, 1999.
[12] H. Lomax, T. H. Pulliam, and D. W. Zingg: Fundamentals of Computational Fluid Dynamics. Springer–Verlag, Berlin 2001. | MR
[13] J. Mach: Application of non-linear diffusion in algorithms of mathematical visualization. In: Proc. Czech–Japanese Seminar in Applied Mathematics 2006 (M. Beneš, M. Kimura, and T. Nakaki, eds.), volume 6 of COE Lecture Note, Faculty of Mathematics, Kyushu University Fukuoka, 2007, pp. 156–164.
[14] S. Mori and J. Zhang: Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51 (2006), 527–539.
[15] T. Oberhuber: Finite difference scheme for the Willmore flow of graphs. Kybernetika 43 (2007), 6, 855–867. | MR | Zbl
[16] W. E. Schiesser: The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego 1991. | MR | Zbl
[17] R. Sierra: Nonrigid Registration of Diffusion Tensor Images. Master’s Thesis, Swiss Federal Institute of Technology, Zurich 2001.
[18] P. Strachota: Anisotropic Diffusion in Mathematical Visualization. In: Science and Supercomputing in Europe – Report 2007, Bologna 2008, CINECA Consorzio Interuniversitario, pp. 826–831,
[19] J. S. Suri, S. K. Setarehdan, and S. Singh, eds.: Advanced Algorithmic Approaches to Medical Image Segmentation: State-of-the-art Application in Cardiology, Neurology, Mammography and Pathology. Springer–Verlag, New York 2002.
[20] D. Tschumperlé and R. Deriche: Variational frameworks for DT-MRI estimation, regularization and visualization. In: Ninth IEEE Internat. Conference on Computer Vision (ICCV’03), volume 1, 2003, p. 116.
[21] D. Tschumperlé and R. Deriche: Tensor Field Visualization with PDE’s and Application to DT-MRI Fiber Visualization. INRIA Sophia-Antipolis, Odyssée Lab. 2004.
[22] C. F. Westin et al.: Processing and visualization for diffusion tensor MRI. Medical Image Analysis 6 (2002), 93–108.