Keywords: mean curvature flow; dislocation dynamics; parametric approach
@article{KYB_2009_45_4_a3,
author = {Pau\v{s}, Petr and Bene\v{s}, Michal},
title = {Direct approach to mean-curvature flow with topological changes},
journal = {Kybernetika},
pages = {591--604},
year = {2009},
volume = {45},
number = {4},
mrnumber = {2588625},
zbl = {1192.65128},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a3/}
}
Pauš, Petr; Beneš, Michal. Direct approach to mean-curvature flow with topological changes. Kybernetika, Tome 45 (2009) no. 4, pp. 591-604. http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a3/
[1] S. Altschuler and M. A. Grayson: Shortening space curves and flow through singularities. J. Differential Geom. 35 (1992), 283–298. | MR
[2] J. W. Barrett, H. Garcke, and R. Nurnberg: On the variational approximation of combined second and fourth order geometric evolution equations. SIAM J. Sci. Comp. 29 (2007), 1006–1041. | MR
[3] M. Beneš: Phase field model of microstructure growth in solidification of pure substances. Acta Math. Univ. Comenian. 70 (2001), 123–151.
[4] M. Beneš: Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interfaces and Free Boundaries 3 (2001), 201–221. | MR
[5] M. Beneš, K. Mikula, T. Oberhuber, and D. Ševčovič: Comparison study for level set and direct Lagrangian methods for computing Willmore flow of closed planar curves. Computing and Visualization in Science 12 (2009), No. 6, 307–317. | MR
[6] K. Deckelnick and G. Dziuk: Mean curvature flow and related topics. Frontiers in Numerical Analysis (2002), 63–108. | MR
[7] G. Dziuk, A. Schmidt, A. Brillard, and C. Bandle: Course on Mean Curvature Flow. Manuscript 75 pp., Freiburg 1994.
[8] F. Kroupa: Long-range elastic field of semi-infinite dislocation dipole and of dislocation jog. Phys. Status Solidi 9 (1965), 27–32.
[9] K. Mikula and D. Ševčovič: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61 (2001), 5, 1473–1501. | MR
[10] K. Mikula and D. Ševčovič: Computational and qualitative aspects of evolution of curves driven by curvature and external force. Comput. Visualization Sci. 6 (2004), 4, 211–225. | MR
[11] V. Minárik and J. Kratochvíl: Dislocation dynamics – analytical description of the interaction force between dipolar loops. Kybernetika 43 (2007), 841–854. | MR
[12] V. Minárik, J. Kratochvíl, and K. Mikula: Numerical Simulation of dislocation dynamics by means of parametric approach. In: Proc. Czech–Japanese Seminar in Applied Mathematics (M. Beneš, J. Mikyška, and T. Oberhuber, eds.), Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague 2005, pp. 128–138.
[13] V. Minárik, J. Kratochvíl, K. Mikula, and M. Beneš: Numerical simulation of dislocation dynamics. In: Numerical Mathematics and Advanced Applications – ENUMATH 2003 (M. Feistauer, V. Dolejší, P. Knobloch, and K. Najzar, eds.), Springer–Verlag, New York 2004, pp. 631–641.
[14] T. Mura: Micromechanics of Defects in Solids. Springer–Verlag, Berlin 1987.
[15] T. Oberhuber: Finite difference scheme for the Willmore flow of graphs. Kybernetika 43 (2007), 855–867. | MR | Zbl
[16] S. Osher and R. P. Fedkiw: Level Set Methods and Dynamic Implicit Surfaces. Springer–Verlag, New York 2003. | MR
[17] P. Pauš: Numerical simulation of dislocation dynamics. In: Proceedings of Slovak–Austrian Congress, Magia (M. Vajsáblová and P. Struk, eds.), Bratislava, pp. 45–52.
[18] P. Pauš and M. Beneš: Topological changes for parametric mean curvature flow. In: Proc. Algoritmy Conference (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), Podbanské 2009, pp. 176–184.
[19] P. Pauš and M. Beneš: Comparison of methods for mean curvature flow. (In preparation.)
[20] J. A. Sethian: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge 1999. | MR | Zbl
[21] D. Ševčovič and S. Yazaki: On a motion of plane curves with a curvature adjusted tangential velocity. In: http://www.iam.fmph.uniba.sk/institute/sevcovic/papers/
[22] cl39.pdf, arXiv:0711.2568, 2007.