Keywords: reaction-diffusion system approximation; degenerate parabolic problem; cross-diffusion system
@article{KYB_2009_45_4_a2,
author = {Murakawa, Hideki},
title = {A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems},
journal = {Kybernetika},
pages = {580--590},
year = {2009},
volume = {45},
number = {4},
mrnumber = {2588624},
zbl = {1205.35143},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a2/}
}
Murakawa, Hideki. A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems. Kybernetika, Tome 45 (2009) no. 4, pp. 580-590. http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a2/
[1] L. Chen and A. Jüngel: Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2006), 301–322. | MR
[2] L. Chen and A. Jüngel: Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differential Equations 224 (2006), 39–59. | MR
[3] E. N. Dancer, D. Hilhorst, M. Mimura, and L. A. Peletier: Spatial segregation limit of a competition-diffusion system. European J. Appl. Math. 10 (1999), 97–115. | MR
[4] D. Hilhorst, M. Iida, M. Mimura, and H. Ninomiya: A competition-diffusion system approximation to the classical two-phase Stefan problem. Japan J. Indust. Appl. Math. 18 (2001), 161–180. | MR
[5] D. Hilhorst, M. Iida, M. Mimura, and H. Ninomiya: Relative compactness in $L^p$ of solutions of some $2m$ components competition-diffusion systems. Discrete Contin. Dyn. Syst. 21 (2008), 1, 233–244. | MR
[6] D. Hilhorst, M. Mimura, and H. Ninomiya: Fast reaction limit of competition-diffusion systems. In: Handbook of Differential Equations: Evolutionary Equations Vol. 5 (C. M. Dafermos and M. Pokorny, eds.). Elsevier/North Holland, Amsterdam 2009, pp. 105–168. | MR
[7] M. Iida, M. Mimura, and H. Ninomiya: Diffusion, cross-diffusion and competitive interaction. J. Math. Biol. 53 (2006), 617–641. | MR
[8] T. Kadota and K. Kuto: Positive steady states for a prey-predator model with some nonlinear diffusion terms. J. Math. Anal. Appl. 323 (2006), 1387–1401. | MR
[9] R. Kersner: Nonlinear heat conduction with absorption: space localization and extinction in finite time. SIAM J. Appl. Math. 43 (1983), 1274–1285. | MR | Zbl
[10] P. Knabner: Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien. Verlag Peter Lang, Frankfurt 1991. | MR | Zbl
[11] H. Murakawa: On reaction-diffusion system approximations to the classical Stefan problems. In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University 2006, pp. 117–125. | MR | Zbl
[12] H. Murakawa: Reaction-diffusion system approximation to degenerate parabolic systems. Nonlinearity 20 (2007), 2319–2332. | MR
[13] H. Murakawa: A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem. Nonlinear Anal. 69 (2008), 3512–3524. | MR | Zbl
[14] H. Murakawa: A Solution of Nonlinear Degenerate Parabolic Problems by Semilinear Reaction-Diffusion Systems. Ph.D. Thesis, Graduate School of Mathematics, Kyushu University, 2008.
[15] H. Murakawa: Discrete-time approximation to nonlinear degenerate parabolic problems using a semilinear reaction-diffusion system. Preprint.
[16] H. Murakawa: A relation between cross-diffusion and reaction-diffusion. Preprint.
[17] R. H. Nochetto: A note on the approximation of free boundaries by finite element methods. RAIRO Modél. Math. Anal. Numér. 20 (1986), 355–368. | MR | Zbl
[18] A. Okubo and S. A. Levin: Diffusion and Ecological Problems: Modern Perspectives. Second edition. (Interdisciplinary Applied Mathematics 14.) Springer–Verlag, New York 2001. | MR
[19] N. Shigesada, K. Kawasaki, and E. Teramoto: Spatial segregation of interacting species. J. Theor. Biol. 79 (1979), 83–99. | MR
[20] K. Tomoeda: Support re-splitting phenomena caused by an interaction between diffusion and absorption. Proc. Equadiff–11 2005, pp. 499–506.