Keywords: optimal portfolio problem; discrete Itô formula; discrete Hamilton–Jacobi–Bellman equation
@article{KYB_2009_45_4_a11,
author = {Ishimura, Naoyuki and Mita, Yuji},
title = {A note on the optimal portfolio problem in discrete processes},
journal = {Kybernetika},
pages = {681--688},
year = {2009},
volume = {45},
number = {4},
mrnumber = {2588633},
zbl = {1190.49034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a11/}
}
Ishimura, Naoyuki; Mita, Yuji. A note on the optimal portfolio problem in discrete processes. Kybernetika, Tome 45 (2009) no. 4, pp. 681-688. http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a11/
[1] R. Abe and N. Ishimura: Existence of solutions for the nonlinear partial differential equation arising in the optimal investment problem. Proc. Japan Acad., Ser. A. 84 (2008), 11–14. | MR
[2] T. Björk: Arbitrage Theory in Continuous Time. Second edition. Oxford Univ. Press, Oxford 2004.
[3] D. Duffie: Security Markets. Academic Press, London 1988. | MR | Zbl
[4] T. Fujita: Introduction to the Stochastic Analysis for Financial Derivatives (Finance no Kakuritsu-Kaiseki Nyumon). Kodan-shya, Tokyo 2002 (in Japanese).
[5] T. Fujita and Y. Kawanishi: A proof of Itô’s formula using a discrete Itô’s formula. Stud. Scienti. Math. Hungarica 45 (2008), 125–134. | MR
[6] R. Korn and E. Korn: Option Pricing and Portfolio Optimization. Graduate Studies in Mathematics 31, American Mathematical Society, Rhode Island 2001. | MR
[7] A. V. Melnikov: Financial Markets. Translations of Mathematical Monographs 184, American Mathematical Society, Rhode Island 1999. | MR | Zbl
[8] T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels: Stochastic Processes for Insurance and Finance. John Wiley & Sons, New York 1998. | MR