Keywords: Cox–Ingersoll–Ross two factors model; rapidly oscillating volatility; singular limit of solution; asymptotic expansion
@article{KYB_2009_45_4_a10,
author = {Stehl{\'\i}kov\'a, Be\'ata and \v{S}ev\v{c}ovi\v{c}, Daniel},
title = {On the singular limit of solutions to the {Cox-Ingersoll-Ross} interest rate model with stochastic volatility},
journal = {Kybernetika},
pages = {670--680},
year = {2009},
volume = {45},
number = {4},
mrnumber = {2588632},
zbl = {1196.60109},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a10/}
}
TY - JOUR AU - Stehlíková, Beáta AU - Ševčovič, Daniel TI - On the singular limit of solutions to the Cox-Ingersoll-Ross interest rate model with stochastic volatility JO - Kybernetika PY - 2009 SP - 670 EP - 680 VL - 45 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a10/ LA - en ID - KYB_2009_45_4_a10 ER -
Stehlíková, Beáta; Ševčovič, Daniel. On the singular limit of solutions to the Cox-Ingersoll-Ross interest rate model with stochastic volatility. Kybernetika, Tome 45 (2009) no. 4, pp. 670-680. http://geodesic.mathdoc.fr/item/KYB_2009_45_4_a10/
[1] D. Brigo and F. Mercurio: Interest Rate Models – Theory and Practice. With smile, inflation and credit. Springer–Verlag, Berlin 2006. | MR
[2] J. C. Cox, J. E. Ingersoll, and S. A. Ross: A theory of the term structure of interest rates. Econometrica 53 (1985), 385–408. | MR
[3] K. C. Chan, G. A. Karolyi, F. A. Longstaff, and A. B. Sanders: An empirical comparison of alternative models of the short-term interest rate. J. Finance 47 (1992), 1209–1227.
[4] J.-P. Fouque, G. Papanicolaou, and K. R. Sircar: Derivatives in Markets with Stochastic Volatility. Cambridge University Press, Cambridge 2000. | MR
[5] K. S. Moon, A. Szepessy, R. Tempone, G. Zouraris, and J. Goodman: Stochastic Differential Equations: Models and Numerics. Royal Institute of Technology, Stockholm. www.math.kth.se/$^{\sim }$szepessy/sdepde.pdf
[6] J. Hull and A. White: Pricing interest rate derivative securities. Rev. Financial Studies 3 (1990), 573–592.
[7] Y. K. Kwok: Mathematical Models of Financial Derivatives. Springer–Verlag, Berlin 1998. | MR | Zbl
[8] B. Stehlíková: Modeling volatility clusters with application to two-factor interest rate models. J. Electr. Engrg. 56 (2005), 12/s, 90–93.
[9] O. A. Vašíček: An equilibrium characterization of the term structure. J. Financial Economics 5 (1977), 177–188.