Optimal sequential multiple hypothesis testing in presence of control variables
Kybernetika, Tome 45 (2009) no. 3, pp. 507-528 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Suppose that at any stage of a statistical experiment a control variable $X$ that affects the distribution of the observed data $Y$ at this stage can be used. The distribution of $Y$ depends on some unknown parameter $\theta$, and we consider the problem of testing multiple hypotheses $H_1:\,\theta=\theta_1$, $H_2:\,\theta=\theta_2, \ldots $, $H_k:\,\theta=\theta_k$ allowing the data to be controlled by $X$, in the following sequential context. The experiment starts with assigning a value $X_1$ to the control variable and observing $Y_1$ as a response. After some analysis, another value $X_2$ for the control variable is chosen, and $Y_2$ as a response is observed, etc. It is supposed that the experiment eventually stops, and at that moment a final decision in favor of one of the hypotheses $H_1,\ldots $, $H_k$ is to be taken. In this article, our aim is to characterize the structure of optimal sequential testing procedures based on data obtained from an experiment of this type in the case when the observations $Y_1, Y_2,\ldots , Y_n$ are independent, given controls $X_1,X_2,\ldots , X_n$, $n=1,2,\ldots $.
Suppose that at any stage of a statistical experiment a control variable $X$ that affects the distribution of the observed data $Y$ at this stage can be used. The distribution of $Y$ depends on some unknown parameter $\theta$, and we consider the problem of testing multiple hypotheses $H_1:\,\theta=\theta_1$, $H_2:\,\theta=\theta_2, \ldots $, $H_k:\,\theta=\theta_k$ allowing the data to be controlled by $X$, in the following sequential context. The experiment starts with assigning a value $X_1$ to the control variable and observing $Y_1$ as a response. After some analysis, another value $X_2$ for the control variable is chosen, and $Y_2$ as a response is observed, etc. It is supposed that the experiment eventually stops, and at that moment a final decision in favor of one of the hypotheses $H_1,\ldots $, $H_k$ is to be taken. In this article, our aim is to characterize the structure of optimal sequential testing procedures based on data obtained from an experiment of this type in the case when the observations $Y_1, Y_2,\ldots , Y_n$ are independent, given controls $X_1,X_2,\ldots , X_n$, $n=1,2,\ldots $.
Classification : 60G40, 62C99, 62L10, 62L15, 93E20
Keywords: sequential analysis; sequential hypothesis testing; multiple hypotheses; control variable; independent observations; optimal stopping; optimal control; optimal decision; optimal sequential testing procedure; Bayes; sequential probability ratio test
@article{KYB_2009_45_3_a9,
     author = {Novikov, Andrey},
     title = {Optimal sequential multiple hypothesis testing in presence of control variables},
     journal = {Kybernetika},
     pages = {507--528},
     year = {2009},
     volume = {45},
     number = {3},
     mrnumber = {2543137},
     zbl = {1165.62053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a9/}
}
TY  - JOUR
AU  - Novikov, Andrey
TI  - Optimal sequential multiple hypothesis testing in presence of control variables
JO  - Kybernetika
PY  - 2009
SP  - 507
EP  - 528
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a9/
LA  - en
ID  - KYB_2009_45_3_a9
ER  - 
%0 Journal Article
%A Novikov, Andrey
%T Optimal sequential multiple hypothesis testing in presence of control variables
%J Kybernetika
%D 2009
%P 507-528
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a9/
%G en
%F KYB_2009_45_3_a9
Novikov, Andrey. Optimal sequential multiple hypothesis testing in presence of control variables. Kybernetika, Tome 45 (2009) no. 3, pp. 507-528. http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a9/

[1] N. Cressie and P. B. Morgan: The VRPT: A sequential testing procedure dominating the SPRT. Econometric Theory 9 (1993), 431–450. | MR

[2] M. Ghosh, N. Mukhopadhyay, and P. K. Sen: Sequential Estimation. John Wiley, New York – Chichester – Weinheim – Brisbane – Singapore – Toronto 1997. | MR

[3] G. W. Haggstrom: Optimal stopping and experimental design. Ann. Math. Statist. 37 (1966), 7–29. | MR | Zbl

[4] G. Lorden: Structure of sequential tests minimizing an expected sample size. Z. Wahrsch. verw. Geb. 51 (1980), 291–302. | MR | Zbl

[5] M. B. Malyutov: Lower bounds for the mean length of a sequentially planned experiment. Soviet Math. (Iz. VUZ) 27 (1983), 11, 21–47. | MR

[6] A. Novikov: Optimal sequential testing of two simple hypotheses in presence of control variables. Internat. Math. Forum 3 (2008), 41, 2025–2048. Preprint arXiv:0812.1395v1 [math.ST] ( | arXiv | MR

[7] A. Novikov: Optimal sequential multiple hypothesis tests. Kybernetika 45 (2009), 2, 309–330. | MR | Zbl

[8] A. Novikov: Optimal sequential procedures with Bayes decision rules. Preprint arXiv:0812.0159v1 [math.ST]( | arXiv | MR

[9] A. Novikov: Optimal sequential tests for two simple hypotheses based on independent observations. Internat. J. Pure Appl. Math. 45 (2008), 2, 291–314. | MR

[10] N. Schmitz: Optimal Sequentially Planned Decision Procedures. (Lecture Notes in Statistics 79.) Springer-Verlag, New York 1993. | MR | Zbl

[11] I. N. Volodin: Guaranteed statistical inference procedures (determination of the optimal sample size). J. Math. Sci. 44 (1989), 5, 568–600. | MR | Zbl

[12] A. Wald and J. Wolfowitz: Optimum character of the sequential probability ratio test. Ann. Math. Statist. 19 (1948), 326–339. | MR

[13] S. Zacks: The Theory of Statistical Inference. John Wiley, New York – London – Sydney – Toronto 1971. | MR | Zbl