Keywords: nonmarkovian control sequence; average cost; attracting point; nonlinear optimitation; stability
@article{KYB_2009_45_3_a7,
author = {Gordienko, Evgueni and Garcia, Antonio and Chavez, Juan Ruiz de},
title = {Asymptotic properties and optimization of some {non-Markovian} stochastic processes},
journal = {Kybernetika},
pages = {475--490},
year = {2009},
volume = {45},
number = {3},
mrnumber = {2543135},
zbl = {1165.62333},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a7/}
}
TY - JOUR AU - Gordienko, Evgueni AU - Garcia, Antonio AU - Chavez, Juan Ruiz de TI - Asymptotic properties and optimization of some non-Markovian stochastic processes JO - Kybernetika PY - 2009 SP - 475 EP - 490 VL - 45 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a7/ LA - en ID - KYB_2009_45_3_a7 ER -
Gordienko, Evgueni; Garcia, Antonio; Chavez, Juan Ruiz de. Asymptotic properties and optimization of some non-Markovian stochastic processes. Kybernetika, Tome 45 (2009) no. 3, pp. 475-490. http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a7/
[1] M. Duflo: Random Iterative Models. Springer-Verlag, Berlin 1997. | MR | Zbl
[2] E. B. Dynkin and A. A. Yushkevich: Controlled Markov Processes. Springer-Verlag, New York 1979. | MR
[3] E. I. Gordienko: An estimate of the stability of optimal control of certain stochastic and deterministic systems. J. Soviet Math. 50 (1992), 891–899. (Translated from the Russian publication of 1989). | MR
[4] E. I. Gordienko and A. A. Yushkevich: Stability estimates in the problem of average optimal switching of a Markov chain. Math. Methods Oper. Res. 57 (2003), 345–365. | MR
[5] X. Guo and Q. Zhu: Average optimality for Markov decision processes in Borel spaces: a new condition and approach. J. Appl. Probab. 43 (2006), 318–334. | MR
[6] O. Hernández-Lerma and J. B. Lasserre: Discrete-Time Markov Control Processes. Springer-Verlag, New York 1996. | MR
[7] R. Montes-de-Oca and F. Salem-Silva: Estimates for perturbations and average Markov decision processes with a minimal state and upper bounded by stochastically ordered Markov chains. Kybernetika 41 (2005), 757–772. | MR
[8] E. L. Porteus: Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford 2002.
[9] S. T. Rachev and L. Rüschendorf: Mass Transportation Problems. Vol. II. Springer-Verlag, New York 1998. | MR
[10] T. N. Saadawi, M. H. Ammar and A. El Hakeen: Fundamentals of Telecomunication Networks. Wiley, New York 1994.
[11] V. G. Sragovich: Mathematical Theory of Adaptive Control. World Scientific, New Jersey 2006. | MR