Absorption in stochastic epidemics
Kybernetika, Tome 45 (2009) no. 3, pp. 458-474 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A two dimensional stochastic differential equation is suggested as a stochastic model for the Kermack–McKendrick epidemics. Its strong (weak) existence and uniqueness and absorption properties are investigated. The examples presented in Section 5 are meant to illustrate possible different asymptotics of a solution to the equation.
A two dimensional stochastic differential equation is suggested as a stochastic model for the Kermack–McKendrick epidemics. Its strong (weak) existence and uniqueness and absorption properties are investigated. The examples presented in Section 5 are meant to illustrate possible different asymptotics of a solution to the equation.
Classification : 37N25, 60H10, 92D25, 92D30
Keywords: SIR epidemic models; stochastic epidemic models; stochastic differential equation; strong solution; weak solution; absorption; Kermack–McKendrick model
@article{KYB_2009_45_3_a6,
     author = {\v{S}t\v{e}p\'an, Josef and Stan\v{e}k, Jakub},
     title = {Absorption in stochastic epidemics},
     journal = {Kybernetika},
     pages = {458--474},
     year = {2009},
     volume = {45},
     number = {3},
     mrnumber = {2543134},
     zbl = {1165.92319},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a6/}
}
TY  - JOUR
AU  - Štěpán, Josef
AU  - Staněk, Jakub
TI  - Absorption in stochastic epidemics
JO  - Kybernetika
PY  - 2009
SP  - 458
EP  - 474
VL  - 45
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a6/
LA  - en
ID  - KYB_2009_45_3_a6
ER  - 
%0 Journal Article
%A Štěpán, Josef
%A Staněk, Jakub
%T Absorption in stochastic epidemics
%J Kybernetika
%D 2009
%P 458-474
%V 45
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a6/
%G en
%F KYB_2009_45_3_a6
Štěpán, Josef; Staněk, Jakub. Absorption in stochastic epidemics. Kybernetika, Tome 45 (2009) no. 3, pp. 458-474. http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a6/

[1] L. J. S. Allen and N. Kirupaharan: Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens. Internat. J. Numer. Anal. Modeling 3 (2005), 2, 329–344. | MR

[2] A. N. Borodin and P. Salminen: Handbook of Brownian Motion-Facts and Formulae. Birkh$\ddot{{\rm a}}$user Verlag, Basel – Boston – Berlin 2002. | MR

[3] S. Busenberg and C. Kenneth: Vertically Transmitted Diseases – Models and Dynamics. Springer-Verlag, Berlin – Heidelberg – New York 1993. | MR

[4] D. J. Daley and J. Gani: Epidemic Modelling: An Introduction. Cambridge University Press, Cambridge 1999. | MR

[5] P. Greenwood, L. F. Gordillo, and R. Kuske: Autonomous stochastic resonance produces epidemic oscillations of fluctuating Size. In: Proc. Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), Matfyzpress, Praha 2006.

[6] N. Ikeda and S. Watanabe: Stochastic Differential Equation and Diffusion Processes. North-Holland, Amsterdam 1981. | MR

[7] J. Kalas and Z. Pospíšil: Continuous Models in Biology (in Czech).Masarykova Univerzita v Brně, Brno 2001.

[8] O. Kallenberg: Foundations of Modern Probability. Second edition. Springer, New York 2002. | MR | Zbl

[9] W. O. Kermack and A. G. McKendrick: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London A 155 (1927), 700–721.

[10] L. C. G. Rogers and D. Williams: Diffusions, Markov Processes and Martingales. Cambridge University Press, Cambridge 2006.

[11] J. Štěpán and D. Hlubinka: Kermack–McKendrick epidemic model revisited. Kybernetika 43 (2007), 4, 395–414. | MR

[12] T. Wai-Yuan and W. Hulin: Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention. World Scientific, Singapore 2005. | MR