Keywords: observer; invariance; convergence; filter; signal power; system energy
@article{KYB_2009_45_3_a5,
author = {\v{C}ern\'y, V\'aclav},
title = {Unifying approach to observer-filter design},
journal = {Kybernetika},
pages = {445--457},
year = {2009},
volume = {45},
number = {3},
mrnumber = {2543133},
zbl = {1165.93318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a5/}
}
Černý, Václav. Unifying approach to observer-filter design. Kybernetika, Tome 45 (2009) no. 3, pp. 445-457. http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a5/
[1] A. N. Atassi and H. K. Khalil: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Automat. Control 44 (1999), 1672–1687. | MR
[2] A. N. Atassi and H. K. Khalil: A separation principle for the control of a class of nonlinear systems. IEEE Trans. Automat. Control 46 (2001), 742–746. | MR
[3] D. Bestle and M. Zeitz: Canonical form observer design for non-linear time-variable systems. Internat. J. Control 38 (1983), 419–431. | MR
[4] R. S. Bucy and P. D. Joseph: Filtering for Stochastic Processes with Applications to Guidance. Interscience Publishers, New York 1968. | MR
[5] V. Černý and J. Hrušák: Non-linear observer design method based on dissipation normal form. Kybernetika 41 (2005), 59–74. | MR
[6] V. Černý and J. Hrušák: Comparing frequency domain, optimal and asymptotic filtering: a tutorial. Internat. J. Control and Intelligent Systems 34 (2006), 136–142. | MR
[7] V. Černý, D. Mayer, and J. Hrušák: Generalized Tellegen principle and physical correctness of system representations. J. Systemics, Cybernetics and Informatics 4 (2006), 38–42.
[8] F. Esfandiari and H. K. Khalil: Output feedback stabilization of fully linearizable systems. Internat. J. Control 56 (1992), 1007–1037. | MR
[9] J. P. Gauthier and G. Bornard: Observability for any $u(t)$ of a class of nonlinear systems. IEEE Trans. Automat. Control 26 (1981), 922–926. | MR
[10] M. S. Ghausi and K. R. Laker: Modern Filter Design. Prentice Hall, Englewood Cliffs, New Jersey 1981.
[11] P. Glendinning: Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press, New York 1994. | MR | Zbl
[12] A. Glumineau, C. H. Moog, and F. Plestan: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 598–603. | MR
[13] R. Hermann and A. J. Krener: Nonlinear controllability and observability. IEEE Trans. Automat. Control 22 (1977), 728–740. | MR
[14] J. Hrušák: Anwendung der Äquivalenz bei Stabilitätsprüfung, Tagung über die Regelungstheorie. Mathematisches Forschungsinstitut, Stuttgart 1969.
[15] J. Hrušák and V. Černý: Non-linear and signal energy optimal asymptotic filter design. J. Systemics, Cybernetics and Informatics 1 (2003), 55–62.
[16] E. C. Ifeachor and B. W. Jervis: Digital Signal Processing: A Practical Approach. Addison Wesley, Wokingham 1993.
[17] A. H. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New York 1970. | Zbl
[18] R. E. Kalman and J. E. Bertram: Control system analysis and design via the second method of Lyapunov: I. continuous-time systems, II. discrete-time systems. ASME J. Basic Engrg. 82 (1960), 371–393, 394–400. | MR
[19] R. E. Kalman and R. S. Bucy: New results in linear filtering and prediction theory. ASME J. Basic Engrg. 83 (1961), 95–108. | MR
[20] H. Keller: Non-linear observer design by transformation into a generalized observer canonical form. Internat. J. Control 46 (1987), 1915–1930. | MR
[21] H. Kimura: Generalized Schwarz form and lattice-ladder realizations of digital filters. IEEE Trans. Circuits Systems 32 (1985), 1130–1139. | Zbl
[22] A. J. Krener and A. Isidori: Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 47–52. | MR
[23] A. J. Krener and W. Respondek: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197–216. | MR
[24] D. G. Luenberger: An introduction to observers. IEEE Trans. Automat. Control 16 (1971), 596–602.
[25] A. Muszynska: Rotordynamics. Taylor & Francis, London 2005. | Zbl
[26] A. W. Oppenheim and R. W. Schafer: Digital Signal Processing. Prentice Hall, Englewood Cliffs, New Jersey 1975.
[27] M. R. Patel, F. Fallside, and P. C. Parks: A new proof of the Routh and Hurwitz criterion by the second method of Lyapunov with application to optimum transfer functions. IEEE Trans. Automat. Control 9 (1963), 319–322.
[28] P. Penfield, S. Spence, and S. Dunker: Tellegen’s Theorem and Electrical Networks. MIT Press, Cambridge, Mass. 1970. | MR
[29] T. Ph. Proychev and R. L. Mishkov: Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input. Automatica 29 (1993), 495–498. | MR
[30] J. W. Rayleigh: The Theory of Sound. Dover Publications, New York 1945. | MR | Zbl
[31] H. R. Schwarz: Ein Verfahren zur Stabilitätsfrage bei Matrizen Eigenwertproblemen. Z. Angew. Math. Phys. 7 (1956), 473–500. | MR | Zbl
[32] S. W. Smith: The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Publishing, San Diego 1999.
[33] J. C. Willems: Dissipative dynamical systems – Part I: General theory. Arch. Rational Mechanics and Analysis 45 (1972), 321–351. | MR
[34] M. Zeitz: Observability canonical (phase-variable) form for non-linear time-variable systems. Internat. J. Control 15 (1984), 949–958. | MR | Zbl