Keywords: nonlinear output regulation; singularly perturbed equation; gyroscope
@article{KYB_2009_45_3_a4,
author = {Reh\'ak, Branislav and \v{C}elikovsk\'y, Sergej and Ruiz-Le\'on, Javier and Orozco-Mora, Jorge},
title = {A comparison of two {FEM-based} methods for the solution of the nonlinear output regulation problem},
journal = {Kybernetika},
pages = {427--444},
year = {2009},
volume = {45},
number = {3},
mrnumber = {2543132},
zbl = {1165.93320},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a4/}
}
TY - JOUR AU - Rehák, Branislav AU - Čelikovský, Sergej AU - Ruiz-León, Javier AU - Orozco-Mora, Jorge TI - A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem JO - Kybernetika PY - 2009 SP - 427 EP - 444 VL - 45 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a4/ LA - en ID - KYB_2009_45_3_a4 ER -
%0 Journal Article %A Rehák, Branislav %A Čelikovský, Sergej %A Ruiz-León, Javier %A Orozco-Mora, Jorge %T A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem %J Kybernetika %D 2009 %P 427-444 %V 45 %N 3 %U http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a4/ %G en %F KYB_2009_45_3_a4
Rehák, Branislav; Čelikovský, Sergej; Ruiz-León, Javier; Orozco-Mora, Jorge. A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem. Kybernetika, Tome 45 (2009) no. 3, pp. 427-444. http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a4/
[1] C. I. Byrnes, F. Delli Priscoli, A. Isidori, and W. Kang: Structurally stable output regulation of nonlinear systems. Automatica 33 (1997), 369–285. | MR
[2] S. Čelikovský and B. Rehák: Output regulation problem with nonhyperbolic zero dynamics: a FEMLAB-based approach. In: Proc. 2nd IFAC Symposium on System, Structure and Control 2004, Oaxaca 2004, pp. 700–705.
[3] S. Čelikovský and B. Rehák: FEMLAB-based error feedback design for the output regulation problem. In: Proc. Asian Control Conference 2006. Bandung 2006.
[4] S. Devasia: Nonlinear inversion-based output tracking. IEEE Trans. Automat. Control 41 (1996), 930–942. | MR | Zbl
[5] B. A. Francis and W. M. Wonham: The internal model principle of control theory. Automatica 12 (1976), 457–465. | MR
[6] B. A. Francis: The linear multivariable regulator problem. SIAM J. Control Optim. 15 (1977), 486–505. | MR
[7] J. S. A. Hepburn and W. M. Wonham: Error feedback and internal models on differentiable manifolds. IEEE Trans. Automat. Control 29 (1981), 397–403. | MR
[8] J. Huang: Nonlinear Output Regulation: Theory and Applications. SIAM, New York 2004. | MR | Zbl
[9] J. Huang: Output regulation of nonlinear systems with nonhyperbolic zero dynamics. IEEE Trans. Automat. Control 40 (1995), 1497–1500. | MR | Zbl
[10] J. Huang: On the solvability of the regulator equations for a class of nonlinear systems. IEEE Trans. Automat. Control 48 (2003), 880–885. | MR
[11] J. Huang and W. J. Rugh: On a nonlinear multivariable servomechanism problem. Automatica 26 (1990), 963–972. | MR
[12] A. Isidori and C. I. Byrnes: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131–140. | MR
[13] A. Isidori: Nonlinear Control Systems. Third edition. Springer, Berlin – Heidelberg – New York 1995. | Zbl
[14] H. K. Khalil: Nonlinear Systems. Pearson Education Inc., Upper Saddle River 2000. | Zbl
[15] B. Rehák, J. Orozco-Mora, S. Čelikovský, and J. Ruiz-León: FEMLAB-based output regulation of nonhyperbolically nonminimum phase system and its real-time implementation. In: Proc. 16th IFAC World Congress, Prague, IFAC 2005.
[16] B. Rehák, J. Orozco-Mora, S. Čelikovský, and J. Ruiz-León: Real-time error-feedback output regulation of nonhyperbolically nonminimum phase system. In: Proc. American Control Conference 2007, New York 2007.
[17] B. Rehák and S. Čelikovský: Numerical method for the solution of the regulator equation with application to nonlinear tracking. Automatica 44 (2008), 1358–1365. | MR
[18] H.-G. Roos, M. Stynes, and L. Tobiska: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin 1996. | MR
[19] J. Ruiz-León, J. L. Orozco-Mora, and D. Henrion: Real-time $H_{2}$ and $H_{\infty }$ control of a gyroscope using Polynomial Toolbox 2.5. In: Latin-American Conference on Automatic Control CLCA 2002, Guadalajara 2002.
[20] A. B. Vasil’eva and B. F. Butuzov: Asymptotic Expansions of Solutions of Singularly Perturbed Equations (in Russian). Nauka, Moscow 1973. | MR