Keywords: uniform-time; compact; semisimple; reverse-system
@article{KYB_2009_45_3_a2,
author = {Ayala, V{\'\i}ctor and Ayala-Hoffmann, Jos\'e and Azevedo Tribuzy, Ivan de},
title = {Controllability of invariant control systems at uniform time},
journal = {Kybernetika},
pages = {405--416},
year = {2009},
volume = {45},
number = {3},
mrnumber = {2543130},
zbl = {1165.93301},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a2/}
}
TY - JOUR AU - Ayala, Víctor AU - Ayala-Hoffmann, José AU - Azevedo Tribuzy, Ivan de TI - Controllability of invariant control systems at uniform time JO - Kybernetika PY - 2009 SP - 405 EP - 416 VL - 45 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a2/ LA - en ID - KYB_2009_45_3_a2 ER -
Ayala, Víctor; Ayala-Hoffmann, José; Azevedo Tribuzy, Ivan de. Controllability of invariant control systems at uniform time. Kybernetika, Tome 45 (2009) no. 3, pp. 405-416. http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a2/
[1] V. Ayala and L. San Martin: Controllability properties of a class of control systems on Lie groups. Lectures Notes in Control and Inform. Sci. 1 (2001), 258, 83–92. | MR
[2] V. Ayala and J. Tirao: Linear control systems on Lie groups and controllability. Amer. Math. Soc. Symposia in Pure Mathematics 64 (1999), 47–64. | MR
[3] Domenico D’Alessandro: Small time controllability of systems on compact Lie groups and spin angular momentum. J. Math. Phys. 42 (2001) 9, 4488–4496. | MR
[4] S. Helgason: Differential Geometry, Lie groups and Symmetric Spaces. Academic Press, New York 1978. | MR | Zbl
[5] V. Jurdjevic and H. J. Sussmann: Controllability of nonlinear systems. J. Differential Equations 12 (1972), 95–116. | MR
[6] V. Jurdjevic and H. J. Sussmann: Control systems on Lie groups. J. Differential Equations 12 (1972), 313–329. | MR
[7] H. Kunita: Support of diffusion processes and controllability problems. In: Proc. Internat. Symposium on Stochastic Differential Equations (K. Ito, ed.), Wiley, New York 1978, pp. 163–185. | MR
[8] Y. Sachkov: Control Theory on Lie Groups. Lecture Notes SISSA, 2006.
[9] L. San Martin: Algebras de Lie. Editorial UNICAMP, Campinas, SP, 1999.
[10] F. Silva Leite: Uniform controllable sets of left-invariant vector fields on compact Lie groups. Systems Control Lett. 7 (1986), 213–216. | MR | Zbl
[11] F. Silva Leite: Uniform controllable sets of left-invariant vector fields on non compact Lie groups. Systems Control Letters 6 (1986), 329–335. | MR
[12] F. W. Warner: Foundations of Differential Manifolds and Lie Groups. Scott Foreman, Glenview 1971. | MR