Keywords: privacy preserving data mining; statistical disclosure control; fuzzy clustering; fuzzy c-means; fuzzy c-means with tolerance
@article{KYB_2009_45_3_a12,
author = {Torra, Vicen\c{c} and Endo, Yasunori and Miyamoto, Sadaaki},
title = {On the comparison of some fuzzy clustering methods for privacy preserving data mining: {Towards} the development of specific information loss measures},
journal = {Kybernetika},
pages = {548--560},
year = {2009},
volume = {45},
number = {3},
mrnumber = {2543140},
zbl = {1183.68510},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a12/}
}
TY - JOUR AU - Torra, Vicenç AU - Endo, Yasunori AU - Miyamoto, Sadaaki TI - On the comparison of some fuzzy clustering methods for privacy preserving data mining: Towards the development of specific information loss measures JO - Kybernetika PY - 2009 SP - 548 EP - 560 VL - 45 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a12/ LA - en ID - KYB_2009_45_3_a12 ER -
%0 Journal Article %A Torra, Vicenç %A Endo, Yasunori %A Miyamoto, Sadaaki %T On the comparison of some fuzzy clustering methods for privacy preserving data mining: Towards the development of specific information loss measures %J Kybernetika %D 2009 %P 548-560 %V 45 %N 3 %U http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a12/ %G en %F KYB_2009_45_3_a12
Torra, Vicenç; Endo, Yasunori; Miyamoto, Sadaaki. On the comparison of some fuzzy clustering methods for privacy preserving data mining: Towards the development of specific information loss measures. Kybernetika, Tome 45 (2009) no. 3, pp. 548-560. http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a12/
[1] J. C. Bezdek: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York 1981. | MR | Zbl
[2] CASC: Computational Aspects of Statistical Confidentiality, EU Project,
[3] http://neon.vb.cbs.nl/casc/ (Test Sets)
[4] J. Domingo-Ferrer and V. Torra: Disclosure control methods and information loss for microdata. In: Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies (P. Doyle, J. I. Lane, J. J. M. Theeuwes, and L. M. Zayatz, eds.), Elsevier 2001, pp. 91–110,
[5] J. Domingo-Ferrer and V. Torra: A quantitative comparison of disclosure control methods for microdata. In: Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies (P. Doyle, J. I. Lane, J. J. M. Theeuwes, and L. M. Zayatz, eds.), Elsevier 2001, pp. 111–133.
[6] G. Duncan, S. Fienberg, R. Krishnam, R. Padman, and S. Roehrig: Disclosure limitation methods and information loss for tabular data. In: Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies (P. Doyle, J. I. Lane, J. J. M. Theeuwes, and L. M. Zayatz, eds.), Elsevier 2001, pp. 135–166.
[7] G. Duncan, S. Keller-McNulty, and S. Stokes: Disclosure Risk vs. Data Utility: The R-U Confidentiality Map. Technical Report No. 121 of National Institute of Statistical Sciences 2001, www.niss.org.
[8] G. Duncan, S. Keller-McNulty, and S. Stokes: Database Security and Confidentiality: Examining Disclosure Risk vs. Data Utility Through the R-U Confidentiality Map. Technical Report No. 142 of National Institute of Statistical Sciences 2004, www.niss.org.
[9] Y. Hasegawa, Y. Endo, Y. Hamasuna, and S. Miyamoto: Fuzzy $c$-means for data with tolerance defined as hyper-rectangle. In: Proc. MDAI 2007 (Lecture Notes in Artificial Intelligence 4617), pp. 237–248.
[10] J. Lane, P. Heus, and T. Mulcahy: Data access in a cyber world: Making use of cyberinfrastructure. Trans. Data Privacy 1 (2008), 2–16. | MR
[11] P. Medrano-Gracia, J. Pont-Tuset, J. Nin, and V. Muntés-Mulero: Ordered data set vectorization for linear regression on data privacy. In: Proc. MDAI 2007 (Lecture Notes in Artificial Intelligence 4617), Springer, Berlin 2007, pp. 361–372.
[12] S. Miyamoto and K. Umayahara: Methods in gard and fuzzy clustering. In: Soft Computing and Human-Centered Machines (Z.-Q. Liu and S. Miyamoto, eds.), Springer, Tokyo 2000, 85–129.
[13] S. Mukherjee, Z. Chen, and A. Gangopadhyay: A privacy-preserving technique for Euclidean distance-based mining algorithms using Fourier-related transforms. The VLDB Journal 15 (2006), 293–315.
[14] R. Murata, Y. Endo, H. Haruyama, and S. Miyamoto: On fuzzy $c$-means for data with tolerance. J. Advanced Computational Intelligence and Intelligent Informatics 10 (2006), 5, 673–681.
[15] J. Nin, J. Herranz, and V. Torra: Rethinking rank swapping to decrease disclosure risk. Data and Knowledge Engrg. 64 (2008), 1, 346–364.
[16] A. Oganian and J. Domingo-Ferrer: On the complexity of optimal microaggregation for statistical disclosure control. Statistical J. United Nations Economic Commission for Europe 18 (2000), 4, 345–354.
[17] V. Torra and J. Domingo-Ferrer: Record linkage methods for multidatabase data mining. In: Information Fusion in Data Mining (V. Torra, ed.), Springer 2003, pp. 101–132.
[18] V. Torra and J. Nin: (2008) Record linkage for database integration using fuzzy integrals. Internat. J. Intel. Systems 23 (2008), 715–734.
[19] M. Trottini: Decision Models for Data Disclosure Limitation. Ph.D. Dissertation, Carnegie Mellon University 2003, http://www.niss.org/dgii/TR/Thesis-Trottini-final.pdf | MR
[20] W. E. Yancey, W. E. Winkler, and R. H. Creecy: Disclosure risk assessment in perturbative microdata protection. In: Inference Control in Statistical Databases 2002 (Lecture Notes in Computer Science 2316), Springer, Berlin 2003, pp. 135–152. | MR
[21] A. C. Yao: Protocols for secure computations. In: Proc. 23rd IEEE Symposium on Foundations of Computer Science, Chicago 1982, pp. 160–164. | MR