Keywords: diffeomorphism; geometric structure; output feedback; immersion
@article{KYB_2009_45_3_a1,
author = {Zhang, Zhenning and Sun, Huafei and Zhong, Fengwei},
title = {Geometric structures of stable output feedback systems},
journal = {Kybernetika},
pages = {387--404},
year = {2009},
volume = {45},
number = {3},
mrnumber = {2543129},
zbl = {1169.53316},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a1/}
}
Zhang, Zhenning; Sun, Huafei; Zhong, Fengwei. Geometric structures of stable output feedback systems. Kybernetika, Tome 45 (2009) no. 3, pp. 387-404. http://geodesic.mathdoc.fr/item/KYB_2009_45_3_a1/
[1] S. Amari: Differential geometry of a parametric family of invertible linear systems-Riemannian metric, dual affine connections, and divergence. Math. Systems Theory 20 (1987), 53–83. | MR | Zbl
[2] A. Ben-Israel and T. N. E Greville: Generalized Inverses. Wiley, New York 1972.
[3] D. F. Delchamps: Global structure of families of multivariable linear systems with an application to identification. Math. Systems Theory 18 (1985), 329–380. | MR
[4] A. Hotz and R. E. Skelton: Covariance control theory. Internat. J. Control 46 (1987), 13–32. | MR
[5] P. S. Krishnaprasad: Symplectic mechanics and rational functions. Ricerche Automat. 10 (1979), 107–135. | MR
[6] A. Ohara and T. Kitamori: Geometric structures of stable state feedback systems. IEEE Trans. Automat. Control 38 (1993), 1579–1583. | MR
[7] A. Ohara and S. Amari: Differential geometric structures of stable state feedback systems with dual connections. Kybernetika 30 (1994), 369–386. | MR
[8] A. Ohara, S. Nakazumi, and N. Suda: Relations between a parametrization of Stabilizing state feedback gains and eigenvalue locations. Systems Control Lett. 16 (1991), 261–266. | MR
[9] A. Ohara, N. Suda, and S. Amari: Dualistic Differential geometry of positive definite matrices and its applications to related problems. Linear Algebra Appl. 247 (1996), 31–53. | MR
[10] A. Ohara and T. Kitamori: Robust stabilization for structurally perturbed plants by assigning a Lyapunov equation’s solution. (In Japanese.) Trans. SICE 25 (1989), 682–689.
[11] F. Zhong, H. Sun, and Z. Zhang: Geometric structures of stable time-variant state feedback systems. J. Beijing Institute of Technology 16 (2007), 500–504. | MR