Keywords: sequential hypotheses test; simple hypothesis; optimal stopping; sequential probability ratio test; likelihood ratio statistic; stability inequality
@article{KYB_2009_45_2_a8,
author = {Gordienko, Evgueni and Novikov, Andrey and Zaitseva, Elena},
title = {Stability estimating in optimal sequential hypotheses testing},
journal = {Kybernetika},
pages = {331--344},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2518155},
zbl = {1165.62052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a8/}
}
Gordienko, Evgueni; Novikov, Andrey; Zaitseva, Elena. Stability estimating in optimal sequential hypotheses testing. Kybernetika, Tome 45 (2009) no. 2, pp. 331-344. http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a8/
[1] Y. S. Chow, H. Robbins, and D. Siegmund: Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin Company, Boston 1971. | MR
[2] E. I. Gordienko and F. S. Salem: Estimates of stability of Markov control processes with unbounded costs. Kybernetika 36 (2000), 195–210. | MR
[3] E. I. Gordienko and A. A. Yushkevich: Stability estimates in the problem of average optimal switching of a Markov chain. Math. Methods Oper. Res. 57 (2003), 345–365. | MR
[4] P. J. Huber: A robust version of the probability ratio test. Ann. Math. Statist. 36 (1965), 1753–1758. | MR | Zbl
[5] A. Kharin: On robustifying of the sequential probability ratio test for a discrete model under “contaminations". Austrian J. Statist. 3 (2002), 4, 267–277.
[6] A. Kharin: Robust sequential testing of hypotheses on discrete probability distributions. Austrian J. Statist. 34 (2005), 2, 153–162.
[7] G. Lorden: Structure of sequential tests minimizing an expected sample size. Z. Wahrsch. Verw. Gebiete 51 (1980), 291–302. | MR | Zbl
[8] V. Mackevičius: Passage to the limit in problems of optimal stopping of Markov processes (in Russian). Litovsk. Mat. Sb. (Russian) 13 (1973), 1, 115–128, 236. | MR
[9] R. Montes-de-Oca, A. Sakhanenko, and F. Salem-Silva: Estimates for perturbations of general discounted Markov control chains. Appl. Math. 30 (2003), 287–304. | MR
[10] A. Novikov: Optimal sequential tests for two simple hypotheses. Sequential Analysis 28 (2009), No. 2. | MR | Zbl
[11] A. Novikov: Optimal sequential tests for two simple hypotheses based on independent observations. Internat. J. Pure Appl. Math. 45 (2008), 2, 291–314. | MR
[12] V. V. Petrov: Sums of Independent Random Variables. Springer, New York 1975. | MR | Zbl
[13] P. X. Quang: Robust sequential testing. Ann. Statist. 13 (1985), 638–649. | MR | Zbl
[14] A. N. Shiryayev: Statistical Sequential Analysis. Nauka, Moscow 1969. (In Russian.)
[15] A. Wald and J. Wolfowitz: Optimum character of the sequential probability ratio test. Ann. Math. Statist. 19 (1948), 326–339. | MR
[16] J. Whitehead: The Design and Analysis of Sequential Clinical Trials. Wiley, New York 1997. | MR | Zbl