Keywords: Boolean model; Boolean model hypothesis; contact distribution function; Euler–Poincaré characteristic; Intrinsic volumes; Laslettś transform
@article{KYB_2009_45_2_a6,
author = {Mrkvi\v{c}ka, Tom\'a\v{s}},
title = {On testing of general random closed set model hypothesis},
journal = {Kybernetika},
pages = {293--308},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2518153},
zbl = {1166.62018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a6/}
}
Mrkvička, Tomáš. On testing of general random closed set model hypothesis. Kybernetika, Tome 45 (2009) no. 2, pp. 293-308. http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a6/
[1] N. A. C. Cressie: Statistics for Spatial Data. Revised Edition. Wiley, New York 1997. | MR | Zbl
[2] P. J. Diggle: Binary mosaics and the spatial pattern of heather. Biometrics 37 (1981), 531–539.
[3] I. Molchanov: Statistics of the Boolean Model for Practitionars and Mathematicians. Wiley, New York 1997.
[4] J. Møller and K. Helisová: Power diagrams and interaction processes for union of discs. Adv. in Appl. Probab. (SGSA) 40 (2008), 1–27. | MR
[5] J. Møller and R. P. Waagepetersen: Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, London 2004 | MR
[6] T. Mrkvička and J. Rataj: On estimation of intrinsic volume densities of stationary random closed sets. Stochastic Process. Appl. 118/2 (2008), 213–231. | MR
[7] W. Nagel, J. Ohser, and K. Pischang: An integral-geometric approach for the Euler–Poincaré characteristic of spatial images. J. Microsc. 198 (2000), 54–62.
[8] Ohser J. and F. Mücklich: Statistical Analysis of Microstructures in Materials Science. Wiley, Chichester 2000.
[9] J. Rataj: On estimation of the Euler number by projections of thin slabs. Adv. in Appl. Probab. 36 (2004), 715–724. | MR | Zbl
[10] J. Rataj: Estimation of intrinsic volumes from parallel neighbourhoods. Suppl. Rend. Circ. Mat. Palermo, Ser. II 77 (2006), 553-563. | MR | Zbl
[11] V. Schmidt and E. Spodarev: Joint estimators for the specific intrinsic volumes of stationary random sets. Stochastic Process. Appl. 115 (2005), 959–981. | MR
[12] R. Schneider: Convex Bodies. The Brunn–Minkowski Theory. Cambridge Univ. Press, Cambridge 1993. | MR | Zbl
[13] R. Schneider and W. Weil: Stochastische Geometrie. Teubner, Stuttgart 2000. | MR
[14] D. Stoyan, W. S. Kendall, and J. Mecke: Stochastic Geometry and Its Applications. Second edition. Wiley, Chichester 1995. | MR