Conditions for bimodality and multimodality of a mixture of two unimodal densities
Kybernetika, Tome 45 (2009) no. 2, pp. 279-292 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Conditions for bimodality of mixtures of two unimodal distributions are investigated in some special cases. Based on general characterizations, explicit criteria for the parameters are derived for mixtures of two Cauchy, logistic, Student, gamma, log-normal, Gumbel and other distributions.
Conditions for bimodality of mixtures of two unimodal distributions are investigated in some special cases. Based on general characterizations, explicit criteria for the parameters are derived for mixtures of two Cauchy, logistic, Student, gamma, log-normal, Gumbel and other distributions.
Classification : 60E05, 62E10
Keywords: bimodality; unimodality; multimodality; mixture of two unimodal distributions
@article{KYB_2009_45_2_a5,
     author = {Do\v{s}l\'a, \v{S}\'arka},
     title = {Conditions for bimodality and multimodality of a mixture of two unimodal densities},
     journal = {Kybernetika},
     pages = {279--292},
     year = {2009},
     volume = {45},
     number = {2},
     mrnumber = {2518152},
     zbl = {1165.62304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a5/}
}
TY  - JOUR
AU  - Došlá, Šárka
TI  - Conditions for bimodality and multimodality of a mixture of two unimodal densities
JO  - Kybernetika
PY  - 2009
SP  - 279
EP  - 292
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a5/
LA  - en
ID  - KYB_2009_45_2_a5
ER  - 
%0 Journal Article
%A Došlá, Šárka
%T Conditions for bimodality and multimodality of a mixture of two unimodal densities
%J Kybernetika
%D 2009
%P 279-292
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a5/
%G en
%F KYB_2009_45_2_a5
Došlá, Šárka. Conditions for bimodality and multimodality of a mixture of two unimodal densities. Kybernetika, Tome 45 (2009) no. 2, pp. 279-292. http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a5/

[1] J. Behboodian: On the modes of a mixture of two normal distribution. Technometrics 12 (1970), 131–139.

[2] H. W. Block, Y. Li, and T. H. Savits: Mixtures of two normal distributions: Modality and failure rate. Statist. Probab. Lett. 74 (2005), 253–264. | MR

[3] A. C. Cohen: Compound normal distribution (Advanced Problems and Solutions). Amer. Math. Monthly 63 (1956), 129.

[4] Š. Došlá: Bimodální rozdělení (Bimodal Distributions). Master Thesis, Charles University, Prague 2006.

[5] I. Eisenberger: Genesis of bimodal distributions. Technometrics 6 (1964), 357–363. | MR

[6] F. Helguero: Sui Massimi Delle Curve Dimorfiche. Biometrika 3 (1904), 85–98.

[7] J. H. B. Kemperman: Mixture with a limited number of modal intervals. Ann. Statist. 19 (1991), 2120–2144. | MR

[8] T. M. Sellke and S. H. Sellke: Chebyshev inequalities for unimodal distributions. Amer. Statist. 51 (1997), 34–40. | MR

[9] C. A. Robertson and J. G. Fryer: Some descriptive properties of normal mixtures. Skand. Aktuarietidskr. 52 (1969), 137–146. | MR

[10] J. Wessels: Multimodality in a family of probability densities, with application to a linear mixture of two normal densities. Statist. Neerlandika 18 (1964), 267–282.