Keywords: bimodality; unimodality; multimodality; mixture of two unimodal distributions
@article{KYB_2009_45_2_a5,
author = {Do\v{s}l\'a, \v{S}\'arka},
title = {Conditions for bimodality and multimodality of a mixture of two unimodal densities},
journal = {Kybernetika},
pages = {279--292},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2518152},
zbl = {1165.62304},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a5/}
}
Došlá, Šárka. Conditions for bimodality and multimodality of a mixture of two unimodal densities. Kybernetika, Tome 45 (2009) no. 2, pp. 279-292. http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a5/
[1] J. Behboodian: On the modes of a mixture of two normal distribution. Technometrics 12 (1970), 131–139.
[2] H. W. Block, Y. Li, and T. H. Savits: Mixtures of two normal distributions: Modality and failure rate. Statist. Probab. Lett. 74 (2005), 253–264. | MR
[3] A. C. Cohen: Compound normal distribution (Advanced Problems and Solutions). Amer. Math. Monthly 63 (1956), 129.
[4] Š. Došlá: Bimodální rozdělení (Bimodal Distributions). Master Thesis, Charles University, Prague 2006.
[5] I. Eisenberger: Genesis of bimodal distributions. Technometrics 6 (1964), 357–363. | MR
[6] F. Helguero: Sui Massimi Delle Curve Dimorfiche. Biometrika 3 (1904), 85–98.
[7] J. H. B. Kemperman: Mixture with a limited number of modal intervals. Ann. Statist. 19 (1991), 2120–2144. | MR
[8] T. M. Sellke and S. H. Sellke: Chebyshev inequalities for unimodal distributions. Amer. Statist. 51 (1997), 34–40. | MR
[9] C. A. Robertson and J. G. Fryer: Some descriptive properties of normal mixtures. Skand. Aktuarietidskr. 52 (1969), 137–146. | MR
[10] J. Wessels: Multimodality in a family of probability densities, with application to a linear mixture of two normal densities. Statist. Neerlandika 18 (1964), 267–282.