Keywords: Neyman's smooth test; proportional hazards; proportional odds; survival analysis; transformation model; two-sample test
@article{KYB_2009_45_2_a4,
author = {Kraus, David},
title = {Checking proportional rates in the two-sample transformation model},
journal = {Kybernetika},
pages = {261--278},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2518151},
zbl = {1165.62072},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a4/}
}
Kraus, David. Checking proportional rates in the two-sample transformation model. Kybernetika, Tome 45 (2009) no. 2, pp. 261-278. http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a4/
[1] P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding: Statistical Models Based on Counting Processes. Springer, New York 1993. | MR
[2] P. K. Andersen and R. D. Gill: Cox’s regression model for counting processes: a large sample study. Ann. Statist. 10 (1982), 1100–1120. | MR
[3] V. Bagdonavičius and M. Nikulin: Generalized proportional hazards model based on modified partial likelihood. Lifetime Data Anal. 5 (1999), 329–350. | MR
[4] V. Bagdonavičius and N. Nikulin: On goodness-of-fit for the linear transformation and frailty models. Statist. Probab. Lett. 47 (2000), 177–188. | MR
[5] V. Bagdonavičius and M. Nikulin: Accelerated life models. Modeling and Statistical Analysis. Chapman & Hall/CRC, Boca Raton 2001.
[6] K. Chen, Z. Jin, and Z. Ying: Semiparametric analysis of transformation models with censored data. Biometrika 89 (2002), 659–668. | MR
[7] D. Collett: Modelling Survival Data in Medical Research. Chapman & Hall/CRC, Boca Raton 2003. | MR
[8] D. M. Dabrowska and K. A. Doksum: Estimation and testing in a two-sample generalized odds-rate model. J. Amer. Statist. Assoc. 83 (19í8), 744–749. | MR
[9] J.-Y. Dauxois and S. N. U. A. Kirmani: Testing the proportional odds model under random censoring. Biometrika 90 (2003), 913–922. | MR
[10] T. R. Fleming and D. P. Harrington: Counting Processes and Survival Analysis. Wiley, New York 1991. | MR
[11] R. D. Gill and M. Schumacher: A simple test of the proportional hazards assumption. Biometrika 74 (1987), 289–300.
[12] D. Kraus: Data-driven smooth tests of the proportional hazards assumption. Lifetime Data Anal. 13 (2007), 1–16. | MR | Zbl
[13] T. Ledwina: Data-driven version of Neyman’s smooth test of fit. J. Amer. Statist. Assoc. 89 (1994), 1000–1005. | MR | Zbl
[14] D. Y. Lin, L. J. Wei, and Z. Ying: Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80 (1993), 557–572. | MR
[15] T. Martinussen and T. H. Scheike: Dynamic Regression Models for Survival Data. Springer, New York 2006. | MR
[16] S. A. Murphy, A. J. Rossini, and A. W. van der Vaart: Maximum likelihood estimation in the proportional odds model. J. Amer. Statist. Assoc. 92 (1997), 968–976. | MR
[17] J. C. W. Rayner and D. J. Best: Smooth Tests of Goodness of Fit. Oxford University Press, New York 1989. | MR
[18] D. Sengupta, A. Bhattacharjee, and B. Rajeev: Testing for the proportionality of hazards in two samples against the increasing cumulative hazard ratio alternative. Scand. J. Statist. 25 (1998), 637–647. | MR
[19] C. A. Struthers and J. D. Kalbfleisch: Misspecified proportional hazard models. Biometrika 73 (1986), 363–369. | MR
[20] A. W. van der Vaart and J. A. Wellner: Weak Convergence and Empirical Processes. With Applications to Statistics. Springer, New York 1996. | MR
[21] L. J. Wei: Testing goodness of fit for proportional hazards model with censored observations. J. Amer. Statist. Assoc. 79 (1984), 649–652. | MR | Zbl