Keywords: conditional independence; Markov basis; closure of exponential family; permutation; L-decomposable
@article{KYB_2009_45_2_a3,
author = {Csisz\'ar, Vill\H{o}},
title = {Markov bases of conditional independence models for permutations},
journal = {Kybernetika},
pages = {249--260},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2518150},
zbl = {1165.62007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a3/}
}
Csiszár, Villő. Markov bases of conditional independence models for permutations. Kybernetika, Tome 45 (2009) no. 2, pp. 249-260. http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a3/
[1] D. Cox, J. Little, and D. O’Shea: Ideals, Varieties, and Algorithms. Springer, New York 1992. | MR
[2] D. E. Critchlow, M. A. Fligner, and J. S. Verducci: Probability models on rankings. J. Math. Psych. 35 (1991), 294–318. | MR
[3] V. Csiszár: Conditional independence relations and log-linear models for random matchings. Acta Math. Hungar. (2008), Online First. | MR
[4] P. Diaconis and N. Eriksson: Markov bases for noncommutative Fourier analysis of ranked data. J. Symbolic Comput. 41 (2006), 173–181. | MR
[5] P. Diaconis and B. Sturmfels: Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26 (1998), 363–397. | MR
[6] A. Dobra: Markov bases for decomposable graphical models. Bernoulli 9 (2003), 1093–1108. | MR | Zbl
[7] M. A. Fligner and J. S. Verducci (eds.): Probability Models and Statistical Analyses for Ranking Data. Springer, New York 1993. | MR
[8] 4ti2 team: 4ti2 – A software package for algebraic, geometric and combinatorial problems on linear spaces. Available at www.4ti2.de.
[9] D. Geiger, C. Meek, and B. Sturmfels: On the toric algebra of graphical models. Ann. Statist. 34 (2006), 1463–1492. | MR
[10] R. D. Luce: Individual Choice Behavior. Wiley, New York 1959. | MR | Zbl
[11] J. I. Marden: Analyzing and Modelling Rank Data. Chapman and Hall, London 1995. | MR
[12] G. Pistone, E. Riccomagno, and H. P. Wynn: Algebraic Statistics. Chapman and Hall/CRC, Bocan Raton 2000. | MR
[13] F. Rapallo: Toric statistical models: parametric and binomial representations. Ann. Inst. Statist. Math. 59 (2007), 727–740. | MR | Zbl
[14] B. Sturmfels: Gröbner bases and convex polytopes. Amer. Math. Soc., Providence RI 1996. | MR | Zbl
[15] S. Sullivant: Toric Ideals in Algebraic Statistics. Ph.D. Thesis, University of California, Berkeley 2005. | MR
[16] A. Takemura and S. Aoki: Some characterizations of minimal Markov basis for sampling from discrete conditional distributions. Ann. Inst. Statist. Math. 56 (2004), 1–17. | MR