Keywords: chain graph; essential graph; factorisation equivalence; feasible merging components; legal merging components; strong equivalence
@article{KYB_2009_45_2_a2,
author = {Studen\'y, Milan and Roverato, Alberto and \v{S}t\v{e}p\'anov\'a, \v{S}\'arka},
title = {Two operations of merging and splitting components in a chain graph},
journal = {Kybernetika},
pages = {208--248},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2518149},
zbl = {1252.62058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a2/}
}
Studený, Milan; Roverato, Alberto; Štěpánová, Šárka. Two operations of merging and splitting components in a chain graph. Kybernetika, Tome 45 (2009) no. 2, pp. 208-248. http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a2/
[1] S. A. Andersson, D. Madigan, and M. D. Perlman: An alternative Markov property for chain graphs. In: Uncertainty in Artificial Intelligence, Proc. Twelfth Conference (F. Jensen and E. Horvitz, eds.), Morgan Kaufmann, San Francisco 1996, pp. 40–48. | MR
[2] S. A. Andersson, D. Madigan, and M. D. Perlman: A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist. 25 (1997), 505–541. | MR
[3] S. A. Andersson, D. Madigan, and M. D. Perlman: On the Markov equivalence of chain graphs, undirected graphs and acyclic digraphs. Scand. J. Statist. 24 (1997), 81–102. | MR
[4] S. A. Andersson, D. Madigan, and M. D. Perlman: Alternative Markov properties for chain graphs. Scand. J. Statist. 28 (2001), 33–85. | MR
[5] D. M. Chickering: A transformational characterization of equivalent Bayesian network structures. In: Uncertainty in Artificial Intelligence, Proc. Eleventh Conference (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, San Francisco 1995, pp. 87–98. | MR
[6] M. Frydenberg: The chain graph Markov property. Scand. J. Statist. 17 (1990), 333–353. | MR | Zbl
[7] S. L. Lauritzen and N. Wermuth: Mixed Interaction Models. Research Report No. R-84-8, Inst. Elec. Sys., University of Aalborg 1984.
[8] S. L. Lauritzen and N. Wermuth: Graphical models for association between variables, some of which are qualitative and some quantitative. Ann. Statist. 17 (1989), 31–57. | MR
[9] S. L. Lauritzen: Graphical Models. Clarendon Press, Oxford 1996. | MR | Zbl
[10] J. Pearl: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo 1988. | MR | Zbl
[11] A. Roverato: A unified approach to the characterisation of equivalence classes of DAGs, chain graphs with no flags and chain graphs. Scand. J. Statist. 32 (2005), 295–312. | MR
[12] A. Roverato and M. Studený: A graphical representation of equivalence classes of AMP chain graphs. J. Machine Learning Research 7 (2006), 1045–1078. | MR
[13] Š. Štěpánová: Equivalence of Chain Graphs (in Czech). Diploma Thesis, Charles University, Prague 2003.
[14] M. Studený: A recovery algorithm for chain graphs. Internat. J. Approx. Reasoning 17 (1997), 265–293. | MR
[15] M. Studený: Characterization of essential graphs by means of the operation of legal merging of components. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 12 (2004), 43–62. | MR
[16] M. Studený and J. Vomlel: Transition between graphical and algebraic representatives of Bayesian network models. In: Proc. 2nd European Workshop on Probabilistic Graphical Models (P. Lucas ed.), Leiden 2004, pp. 193–200.
[17] M. Studený: Probabilistic Conditional Independence Structures. Springer-Verlag, London 2005.
[18] T. Verma and J. Pearl: Equivalence and synthesis of causal models. In: Uncertainty in Artificial Intelligence, Proc. Sixth Conference (P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, eds.), North-Holland, Amsterdam 1991, pp. 255–270.
[19] M. Volf and M. Studený: A graphical characterization of the largest chain graphs. Internat. J. Approx. Reasoning 20 (1999), 209–236. | MR