Keywords: 0/1 polytopes; linear codes; hierarchical models; exponential families
@article{KYB_2009_45_2_a1,
author = {Kahle, Thomas and Wenzel, Walter and Ay, Nihat},
title = {Hierarchical models, marginal polytopes, and linear codes},
journal = {Kybernetika},
pages = {189--207},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2518148},
zbl = {1167.94340},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a1/}
}
Kahle, Thomas; Wenzel, Walter; Ay, Nihat. Hierarchical models, marginal polytopes, and linear codes. Kybernetika, Tome 45 (2009) no. 2, pp. 189-207. http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a1/
[1] N. Ay and A. Knauf: Maximizing multi-information. Kybernetika 42 (2006), 517–538. | MR
[2] S. Amari: Information geometry on hierarchy of probability distributions. IEEE Trans. Inform. Theory 47 (2001), 1701–1711. | MR | Zbl
[3] E. Caianiello: Synthesis of boolean nets and time behaviour of a general mathematical neuron. Biol. Cybernet. 18 (1975), 111–117. | MR
[4] E. Caianiello: Neuronic equations revisited and completely solved. In: Brain Theory (G. Palm and A. Aertsen, eds.), Springer, Berlin 1986. | MR
[5] I. Csiszár: $I$-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146–158. | MR
[6] M. M. Deza and M. Laurent: Geometry of Cuts and Metrics. Algorithms and Combinatorics. Springer, Berlin 1997. | MR
[7] J. N. Darroch and T. P. Speed: Additive and multiplicative models and interactions. Ann. Statist. 11 (1983), 3, 724–738. | MR
[8] J. Feldman, M. Wainwright, and D. R. Karger: Using linear programming to decode linear codes. IEEE Trans. Inform. Theory 51 (2005), 3, 954–972. | MR
[9] H.-O. Georgii: Gibbs Measures and Phase Transitions (de Gruyter Studies in Mathematics 9). Walter de Gruyter, Berlin 1988. | MR
[10] E. Gawrilow and M. Joswig: polymake: a framework for analyzing convex polytopes. Polytopes – Combinatorics and Computation, pp. 43–47. Birkhäuser, Basel 2000. | MR
[11] S. Hoşten and S. Sullivant: Gröbner bases and polyhedral geometry of reducible and cyclic models. J. Combin. Theory Ser. A 100 (2002), 2, 277–301. | MR
[12] T. Kahle and N. Ay: Support sets of distributions with given interaction structure. In: Proc. WUPES 2006, 2006.
[13] T. Kahle: Neighborliness of marginal polytopes. 2008. submitted, arXiv:0809.0786.
[14] S. Kullback: Information Theory and Statistics. Dover, New York 1968. | MR | Zbl
[15] S. L. Lauritzen: Graphical Models. (Oxford Statistical Science Series.) Oxford University Press, 1996. | MR | Zbl
[16] J. H. van Lint: Introduction to Coding Theory. GTM. Third edition. Springer, Berlin 1999. | MR | Zbl
[17] W. Wenzel: Regular simplices inscribed into the cube and exhibiting a group structure. J. Combin. Math. Combin. Comput. 59 (2006), 213–220. | MR | Zbl
[18] G. Winkler: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. Second edition. Springer, Berlin 2003. | MR | Zbl
[19] M. J. Wainwright and M. I. Jordan: Variational inference in graphical models: The view from the marginal polytope. In: Allerton Conference on Communication, Control, and Computing, 2003.
[20] G. M. Ziegler: Lectures on Polytopes. GTM 142, Springer, Berlin 1994. | MR | Zbl
[21] G. M. Ziegler: Lectures on 0/1 polytopes. In: Polytopes – Combinatorics and Computation (G. Kalai and G. M. Ziegler, eds.), pp. 1–41. Birkhäuser, Basel 2000. | MR | Zbl