Keywords: log-linear models; marginal problem; null Markov chains
@article{KYB_2009_45_2_a0,
author = {Asci, Claudio and Piccioni, Mauro},
title = {Asymptotic behaviour of a {BIPF} algorithm with an improper target},
journal = {Kybernetika},
pages = {169--188},
year = {2009},
volume = {45},
number = {2},
mrnumber = {2518147},
zbl = {1170.60326},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a0/}
}
Asci, Claudio; Piccioni, Mauro. Asymptotic behaviour of a BIPF algorithm with an improper target. Kybernetika, Tome 45 (2009) no. 2, pp. 169-188. http://geodesic.mathdoc.fr/item/KYB_2009_45_2_a0/
[1] D. Z. Albert: Quantum Mechanics and Experience. Harvard College, Cambridge 1992. | MR
[2] C. Asci, G. Letac, and M. Piccioni: Beta-hypergeometric distributions and random continued fractions. Statist. Probab. Lett. 78 (2008), 1711–1721. | MR
[3] C. Asci and M. Piccioni: The IPF algorithm when the marginal problem is unsolvable: the simplest case. Kybernetika 39 (2003), 731–737. | MR
[4] C. Asci and M. Piccioni: Functionally compatible local characteristics for the local specification of priors in graphical models. Scand. J. Statist. 34 (2007), 829–840. | MR
[5] I. Csiszár: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146–158. | MR
[6] A. P. Dawid and S. L. Lauritzen: Hyper-Markov laws in the statistical analysis of decomposable graphical models. Ann. Statist. 21 (1993), 1272–1317. | MR
[7] D. A. van Dyk and X. Meng: The art of data augmentation. With discussions, and a rejoinder by the authors. J. Comput. Graph. Statist. 10 (2001), 1–111. | MR
[8] A. Einstein, B. Podolsky, and N. Rosen: Can the quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 (1935), 777–780.
[9] A. Gelman, J. B. Carlin, D. B. Rubin, and H. S. Stern: Bayesian Data Analysis. Chapman and Hall, London 1995. | MR
[10] J. P. Hobert and G. Casella: Functional compatibility, Markov chains, and Gibbs sampling with improper posteriors. J. Comput. Graph. Statist. 7 (1998), 42–60. | MR
[11] S. L. Lauritzen: Graphical Models. Clarendon Press, Oxford 1996. | MR | Zbl
[12] S. L. Lauritzen and T. S. Richardson: Chain graph models and their causal interpretations (with discussion). J. Roy. Statist. Soc. Ser. B 64 (2002), 321–348. | MR
[13] S. P. Meyn and R. L. Tweedie: Markov Chains and Stochastic Stability. Springer-Verlag, London 1993. | MR
[14] M. Piccioni: Independence structure of natural conjugate densities to exponential families and the Gibbs’ sampler. Scand. J. Statist. 27 (2000), 111–127. | MR | Zbl
[15] E. D. Rainville: Special Functions. MacMillan, New York 1960. | MR | Zbl
[16] J. L. Schafer: Analysis of Incomplete Multivariate Data. Chapman and Hall, London 1997. | MR | Zbl
[17] R. L. Tweedie: R-theory for Markov chains on a general state space I, II. Ann. Probab. 2 (1974), 840–878. | MR
[18] D. Williams: Weighing the Odds. Cambridge University Press, Cambridge 2001. | MR | Zbl