Keywords: multivariable system; decentralized controller; frequency domain; independent design; robust stability; unstructured uncertainty
@article{KYB_2009_45_1_a5,
author = {Koz\'akov\'a, Alena and Vesel\'y, Vojtech and Osusk\'y, Jakub},
title = {A new {Nyquist-based} technique for tuning robust decentralized controllers},
journal = {Kybernetika},
pages = {63--83},
year = {2009},
volume = {45},
number = {1},
mrnumber = {2489581},
zbl = {1158.93392},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009_45_1_a5/}
}
Kozáková, Alena; Veselý, Vojtech; Osuský, Jakub. A new Nyquist-based technique for tuning robust decentralized controllers. Kybernetika, Tome 45 (2009) no. 1, pp. 63-83. http://geodesic.mathdoc.fr/item/KYB_2009_45_1_a5/
[1] M. S. Chiu and Y. Arkun: A methodology for sequential design of robust decentralized control systems. Automatica 28 (1992), 997–1001. | MR
[2] M. Hovd and S. Skogestad: Improved independent design of robust decentralized controllers. In: 12th IFAC World Congress, Vol. 5, Sydney 1993, pp. 271–274.
[3] M. Hovd and S. Skogestad: Sequential design of decentralized controllers. Automatica 30, (1994), 1601–1607. | MR
[4] A. İftar: Decentralized robust control nased on overlapping decompositions. In: 10th IFAC Symposium om Large Scale Systems, Osaka 2004, pp. 605–609.
[5] A. İftar: Decentralized robust control of large-scale time-delay systems. In: 17th IFAC World Congress, Seoul 2008, CD-ROM.
[6] A. İftar and U. Özgüner: Decentralized LQG/LTR controller design for interconnected systems. In: Proc. American Control Conference, Minneapolis 1987, pp. 1682–1687.
[7] A. İftar and U. Özgüner: Local LQG/LTR controller design for decentralized systems. IEEE Trans. Automat. Control AC-32 (1987), 926–930.
[8] K. H. Johansson: Interaction bounds in multivariable control systems. Automatica 38 (2002), 1045–1051. | MR | Zbl
[9] A. Kozáková: Robust decentralized control of complex systems in the frequency domain. In: 2nd IFAC Workshop New Trends in Design of Control Systems, Elsevier Kidlington UK, 1998.
[10] A. Kozáková and V. Veselý: A frequency domain design technique for robust decentralized controllers. In: 16th IFAC World Congress, Prague 2005, Mo-E21-TO/6, CD-ROM.
[11] A. Kozáková and V. Veselý: Improved tuning technique for robust decentralized PID controllers. In: 11th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems Theory and Applications, Gdansk 2007, CD-ROM.
[12] A. Kozáková and V. Veselý: Robust decentralized controller design with additive affine-type uncertainty. Internat. J. Innovative Computing, Information and Control (IJICIC), 3 (2007), 5, 1109–1120.
[13] W. L. Luyben and A. Jutan: Simple method for tuning SISO controllers in multivariable system. Indust. Eng. Chem. Process Development 25 (1986), 654–660.
[14] A. G. J. MacFarlane and I. Postlethwaite: The generalized Nyquist stability criterion and multivariable root loci. Internat. J. Control 25 (1977), 81–127. | MR
[15] D. Q. Mayne: The design of linear multivariable systems. Automatica 9 (1973), 201–207. | MR | Zbl
[16] J. J. Neymark: Dynamical Systems and Controlled Processes. Nauka, Moscow 1978 (in Russian).
[17] X. Qiang, C. Wen-Jian, and H. Ming: A practical decentralized auto-tuning method for TITO systems under closed-loop control. Internat. J. Innovative Computing, Information and Control (IJICIC) 2 (2006), 305–322.
[18] H. Schmidt and E. W. Jacobsen: Selecting control configurations for performance with independent design. Comput. Chem. Engrg. 27 (2003), 101–109.
[19] S. Skogestad and M. Morari: Robust performance of decentralized control systems by independent designs. Automatica 25 (1989), 119–125. | MR
[20] S. Skogestad and I. Postlethwaite: Multivariable Feedback Control: Analysis and Design. Third edition. Wiley, Chichester – New York – Brisbane – Toronto – Singapore 1996.
[21] V. Veselý: Large scale dynamic system stabilization using the principle of dominant subsystem approach. Kybernetika 29 (1993), 1, 48–61. | MR