Symmetries of random discrete copulas
Kybernetika, Tome 44 (2008) no. 6, pp. 846-863 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we analyze some properties of the discrete copulas in terms of permutations. We observe the connection between discrete copulas and the empirical copulas, and then we analyze a statistic that indicates when the discrete copula is symmetric and obtain its main statistical properties under independence. The results obtained are useful in designing a nonparametric test for symmetry of copulas.
In this paper we analyze some properties of the discrete copulas in terms of permutations. We observe the connection between discrete copulas and the empirical copulas, and then we analyze a statistic that indicates when the discrete copula is symmetric and obtain its main statistical properties under independence. The results obtained are useful in designing a nonparametric test for symmetry of copulas.
Classification : 60C05, 62E15, 62H05
Keywords: discrete copulas; r-symmetric permutations; independence
@article{KYB_2008_44_6_a8,
     author = {Erdely, Arturo and Gonz\'alez{\textendash}Barrios, Jos\'e M. and Nelsen, Roger B.},
     title = {Symmetries of random discrete copulas},
     journal = {Kybernetika},
     pages = {846--863},
     year = {2008},
     volume = {44},
     number = {6},
     mrnumber = {2488911},
     zbl = {1206.62099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a8/}
}
TY  - JOUR
AU  - Erdely, Arturo
AU  - González–Barrios, José M.
AU  - Nelsen, Roger B.
TI  - Symmetries of random discrete copulas
JO  - Kybernetika
PY  - 2008
SP  - 846
EP  - 863
VL  - 44
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a8/
LA  - en
ID  - KYB_2008_44_6_a8
ER  - 
%0 Journal Article
%A Erdely, Arturo
%A González–Barrios, José M.
%A Nelsen, Roger B.
%T Symmetries of random discrete copulas
%J Kybernetika
%D 2008
%P 846-863
%V 44
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a8/
%G en
%F KYB_2008_44_6_a8
Erdely, Arturo; González–Barrios, José M.; Nelsen, Roger B. Symmetries of random discrete copulas. Kybernetika, Tome 44 (2008) no. 6, pp. 846-863. http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a8/

[1] Aguiló I., Suñer, J., Torrens J.: Matrix representation of discrete quasi-copulas. Fuzzy Sets and Systems 159 (2008), 1658–1672 | DOI | MR

[2] Alsina C., Frank, M. J, Schweizer B.: Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Co., Singapore 2006 | MR | Zbl

[3] Deheuvels P.: La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292 | MR | Zbl

[4] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[5] Klement E. P., Mesiar R.: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005 | MR | Zbl

[6] Kolesárová A., Mesiar R., Mordelová, J., Sempi C.: Discrete copulas. IEEE Trans. Fuzzy Systems. 14 (2006), 698–705 | DOI

[7] Kolesárová A., Mordelová J.: Quasi-copulas and copulas on a discrete scale. Soft Computing 10 (2006), 495–501 | DOI | Zbl

[8] Mayor G., Suñer, J., Torrens J.: Copula-like operations on finite settings. IEEE Trans. Fuzzy Systems 13 (2005), 468–477 | DOI

[9] Mayor G., Suñer, J., Torrens J.: Sklar’s Theorem in finite settings. IEEE Trans. Fuzzy Systems 15 (2007), 410–416 | DOI

[10] Mesiar R.: Discrete copulas – what they are. In: Joint EUSFLAT-LFA 2005, Conference Proceedings (E. Montseny and P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930

[11] Miller W.: The maximum order of an element of a finite symmetric group. Amer. Math. Monthly 94 (1987), 6, 497–506 | DOI | MR | Zbl

[12] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006 | MR | Zbl

[13] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North-Holland, New York 1983 | MR | Zbl

[14] Skiena S.: The cycle structure of permutations. In: Implementing Discrete Mathematics: Combinatorial and Graph Theory with Mathematica. Addison-Wesley, Reading, MA 1990, pp. 20–24 | MR