Exact distribution under independence of the diagonal section of the empirical copula
Kybernetika, Tome 44 (2008) no. 6, pp. 826-845 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we analyze some properties of the empirical diagonal and we obtain its exact distribution under independence for the two and three- dimensional cases, but the ideas proposed in this paper can be carried out to higher dimensions. The results obtained are useful in designing a nonparametric test for independence, and therefore giving solution to an open problem proposed by Alsina, Frank and Schweizer [2].
In this paper we analyze some properties of the empirical diagonal and we obtain its exact distribution under independence for the two and three- dimensional cases, but the ideas proposed in this paper can be carried out to higher dimensions. The results obtained are useful in designing a nonparametric test for independence, and therefore giving solution to an open problem proposed by Alsina, Frank and Schweizer [2].
Classification : 60C05, 62E15, 62H05
Keywords: Archimedean copula; diagonal section; independence
@article{KYB_2008_44_6_a7,
     author = {Erdely, Arturo and Gonz\'alez{\textendash}Barrios, Jos\'e M.},
     title = {Exact distribution under independence of the diagonal section of the empirical copula},
     journal = {Kybernetika},
     pages = {826--845},
     year = {2008},
     volume = {44},
     number = {6},
     mrnumber = {2488910},
     zbl = {1252.60015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a7/}
}
TY  - JOUR
AU  - Erdely, Arturo
AU  - González–Barrios, José M.
TI  - Exact distribution under independence of the diagonal section of the empirical copula
JO  - Kybernetika
PY  - 2008
SP  - 826
EP  - 845
VL  - 44
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a7/
LA  - en
ID  - KYB_2008_44_6_a7
ER  - 
%0 Journal Article
%A Erdely, Arturo
%A González–Barrios, José M.
%T Exact distribution under independence of the diagonal section of the empirical copula
%J Kybernetika
%D 2008
%P 826-845
%V 44
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a7/
%G en
%F KYB_2008_44_6_a7
Erdely, Arturo; González–Barrios, José M. Exact distribution under independence of the diagonal section of the empirical copula. Kybernetika, Tome 44 (2008) no. 6, pp. 826-845. http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a7/

[1] Aguiló I., Suñer, J., Torrens J.: Matrix representation of discrete quasi-copulas. Fuzzy Sets and Systems 159 (2008), 1658–1672 | DOI | MR

[2] Alsina C., Frank M. J., Schweizer B.: Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Co., Singapore 2006 | MR | Zbl

[3] Bailey D. F.: Counting arrangements of 1’s and $-1$’s. Math. Mag. 69 (1996), 128–131 | MR | Zbl

[4] Barcucci E., Verri M. C.: Some more properties of Catalan numbers. Discrete Math. 102 (1992), 229–237 | DOI | MR | Zbl

[5] Callan D.: Some bijections and identities for the Catalan and Fine numbers. Séminaire Lotharingen de Combinatoire 53 (2006), B53e (16 pp) | MR | Zbl

[6] Cameron N. T.: Random Walks, Trees and Extensions of Riordan Group Techniques. Ph.D. Thesis. Howard University 2002 | MR

[7] Chung K. L., Feller W.: On fluctuations in coin-tossing. Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 605–608 | DOI | MR

[8] Darsow W. F., Frank M. J.: Associative functions and Abel–Schröder systems. Publ. Math. Debrecen 30 (1983), 253–272 | MR | Zbl

[9] Deheuvels P.: La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292 | MR | Zbl

[10] Engleberg E. O.: On some problems concerning a restricted random walk. J. Appl. Probab. 2 (1965), 396–404 | DOI | MR

[11] Erdely A.: Diagonal Properties of the Empirical Copula and Applications. Construction of Families of Copulas with Given Restrictions. Ph.D. Thesis, Universidad Nacional Autónoma de México 2007

[12] Feller W.: An Introduction to Probability Theory and Its Applications, Vol. 1. Third edition. Wiley, New York 1968 | MR | Zbl

[13] Frank M. J.: Diagonals of copulas and Schröder’s equation. Aequationes Math. 51 (1996), 150 | MR

[14] Kimberling C. H.: A probabilistic interpretation of complete monotonicity. Aequationes Math. 10 (1974), 152–164 | DOI | MR | Zbl

[15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[16] Klement E. P., Mesiar R.: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005 | MR | Zbl

[17] Kolesárová A., Mesiar R., Mordelová, J., Sempi C.: Discrete Copulas. IEEE Trans. Fuzzy Systems 14 (2006), 698–705 | DOI

[18] Kolesárová A., Mordelová J.: Quasi-copulas and copulas on a discrete scale. Soft Computing 10 (2006), 495–501 | DOI | Zbl

[19] Kuczma M.: Functional Equations in a Single Variable. Polish Scientific Publishers, Warsaw 1968 | MR | Zbl

[20] Kuczma M., Choczewski, B., Ger R.: Iterative Functional Equations. Cambridge University Press, New York 1990 | MR | Zbl

[21] Mayor G., Suner, J., Torrens J.: Copula-like operations on finite settings. IEEE Trans. Fuzzy Systems 13 (2005), 468–477 | DOI

[22] McNeil A. J., Nešlehová J.: Multivariate Archimedean copulas, $D$-monotone functions and $l_{1}$-norm symmetric distributions. Ann. Statist, to appear | MR

[23] Mesiar R.: Discrete copulas – what they are. In: Joint EUSFLAT-LFA 2005, Conference Proc. (E. Montsenyand P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930

[24] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006 | MR | Zbl

[25] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North-Holland, New York 1983 | MR | Zbl

[26] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR

[27] Sungur E. A., Yang Y.: Diagonal copulas of Archimedean class. Comm. Statist. Theory Methods 25 (1996), 1659–1676 | DOI | MR | Zbl