Keywords: Archimedean copula; diagonal section; independence
@article{KYB_2008_44_6_a7,
author = {Erdely, Arturo and Gonz\'alez{\textendash}Barrios, Jos\'e M.},
title = {Exact distribution under independence of the diagonal section of the empirical copula},
journal = {Kybernetika},
pages = {826--845},
year = {2008},
volume = {44},
number = {6},
mrnumber = {2488910},
zbl = {1252.60015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a7/}
}
TY - JOUR AU - Erdely, Arturo AU - González–Barrios, José M. TI - Exact distribution under independence of the diagonal section of the empirical copula JO - Kybernetika PY - 2008 SP - 826 EP - 845 VL - 44 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a7/ LA - en ID - KYB_2008_44_6_a7 ER -
Erdely, Arturo; González–Barrios, José M. Exact distribution under independence of the diagonal section of the empirical copula. Kybernetika, Tome 44 (2008) no. 6, pp. 826-845. http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a7/
[1] Aguiló I., Suñer, J., Torrens J.: Matrix representation of discrete quasi-copulas. Fuzzy Sets and Systems 159 (2008), 1658–1672 | DOI | MR
[2] Alsina C., Frank M. J., Schweizer B.: Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Co., Singapore 2006 | MR | Zbl
[3] Bailey D. F.: Counting arrangements of 1’s and $-1$’s. Math. Mag. 69 (1996), 128–131 | MR | Zbl
[4] Barcucci E., Verri M. C.: Some more properties of Catalan numbers. Discrete Math. 102 (1992), 229–237 | DOI | MR | Zbl
[5] Callan D.: Some bijections and identities for the Catalan and Fine numbers. Séminaire Lotharingen de Combinatoire 53 (2006), B53e (16 pp) | MR | Zbl
[6] Cameron N. T.: Random Walks, Trees and Extensions of Riordan Group Techniques. Ph.D. Thesis. Howard University 2002 | MR
[7] Chung K. L., Feller W.: On fluctuations in coin-tossing. Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 605–608 | DOI | MR
[8] Darsow W. F., Frank M. J.: Associative functions and Abel–Schröder systems. Publ. Math. Debrecen 30 (1983), 253–272 | MR | Zbl
[9] Deheuvels P.: La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292 | MR | Zbl
[10] Engleberg E. O.: On some problems concerning a restricted random walk. J. Appl. Probab. 2 (1965), 396–404 | DOI | MR
[11] Erdely A.: Diagonal Properties of the Empirical Copula and Applications. Construction of Families of Copulas with Given Restrictions. Ph.D. Thesis, Universidad Nacional Autónoma de México 2007
[12] Feller W.: An Introduction to Probability Theory and Its Applications, Vol. 1. Third edition. Wiley, New York 1968 | MR | Zbl
[13] Frank M. J.: Diagonals of copulas and Schröder’s equation. Aequationes Math. 51 (1996), 150 | MR
[14] Kimberling C. H.: A probabilistic interpretation of complete monotonicity. Aequationes Math. 10 (1974), 152–164 | DOI | MR | Zbl
[15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[16] Klement E. P., Mesiar R.: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005 | MR | Zbl
[17] Kolesárová A., Mesiar R., Mordelová, J., Sempi C.: Discrete Copulas. IEEE Trans. Fuzzy Systems 14 (2006), 698–705 | DOI
[18] Kolesárová A., Mordelová J.: Quasi-copulas and copulas on a discrete scale. Soft Computing 10 (2006), 495–501 | DOI | Zbl
[19] Kuczma M.: Functional Equations in a Single Variable. Polish Scientific Publishers, Warsaw 1968 | MR | Zbl
[20] Kuczma M., Choczewski, B., Ger R.: Iterative Functional Equations. Cambridge University Press, New York 1990 | MR | Zbl
[21] Mayor G., Suner, J., Torrens J.: Copula-like operations on finite settings. IEEE Trans. Fuzzy Systems 13 (2005), 468–477 | DOI
[22] McNeil A. J., Nešlehová J.: Multivariate Archimedean copulas, $D$-monotone functions and $l_{1}$-norm symmetric distributions. Ann. Statist, to appear | MR
[23] Mesiar R.: Discrete copulas – what they are. In: Joint EUSFLAT-LFA 2005, Conference Proc. (E. Montsenyand P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930
[24] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006 | MR | Zbl
[25] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North-Holland, New York 1983 | MR | Zbl
[26] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR
[27] Sungur E. A., Yang Y.: Diagonal copulas of Archimedean class. Comm. Statist. Theory Methods 25 (1996), 1659–1676 | DOI | MR | Zbl