Extreme distribution functions of copulas
Kybernetika, Tome 44 (2008) no. 6, pp. 817-825 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.
In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.
Classification : 60E05, 60E15, 60G70, 62E10, 62H05, 62H10
Keywords: copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman’s footrule
@article{KYB_2008_44_6_a6,
     author = {\'Ubeda-Flores, Manuel},
     title = {Extreme distribution functions of copulas},
     journal = {Kybernetika},
     pages = {817--825},
     year = {2008},
     volume = {44},
     number = {6},
     mrnumber = {2488909},
     zbl = {1196.62060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a6/}
}
TY  - JOUR
AU  - Úbeda-Flores, Manuel
TI  - Extreme distribution functions of copulas
JO  - Kybernetika
PY  - 2008
SP  - 817
EP  - 825
VL  - 44
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a6/
LA  - en
ID  - KYB_2008_44_6_a6
ER  - 
%0 Journal Article
%A Úbeda-Flores, Manuel
%T Extreme distribution functions of copulas
%J Kybernetika
%D 2008
%P 817-825
%V 44
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a6/
%G en
%F KYB_2008_44_6_a6
Úbeda-Flores, Manuel. Extreme distribution functions of copulas. Kybernetika, Tome 44 (2008) no. 6, pp. 817-825. http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a6/

[1] Behboodian J., Dolati A., Úbeda-Flores M.: Measures of association based on average quadrant dependence. J. Probab. Statist. Sci. 3 (2005), 161–173

[2] Capérà P., Fougères A.-L., Genest C.: A stochastic ordering based on a decomposition of Kendall’s tau. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 81–86

[3] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Constructing copulas with given diagonal and opposite diagonal sections, to appea.

[4] Durante F., Kolesárová A., Mesiar, R., Sempi C.: Copulas with given diagonal sections: novel constructions and applications. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 15 (2007), 397–410 | DOI | MR | Zbl

[5] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 | MR | Zbl

[6] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 | MR | Zbl

[7] Genest C., Rivest L.-P.: On the multivariate probability integral transformation. Statist. Probab. Lett. 53 (2001), 391–399 | DOI | MR | Zbl

[8] Gini C.: L’Ammontare e la composizione della ricchezza delle nazione. Bocca Torino 1914

[9] Mikusiński P., Sherwood, H., Taylor M. D.: Shuffles of Min. Stochastica 13 (1992), 61–74 | MR | Zbl

[10] Nelsen R. B.: Concordance and Gini’s measure of association. J. Nonparametric Statist. 9 (1998), 227–238 | DOI | MR | Zbl

[11] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006 | MR | Zbl

[12] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Distribution functions of copulas: a class of bivariate probability integral transforms. Statist. Probab. Lett. 54 (2001), 277–282 | DOI | MR | Zbl

[13] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Kendall distribution functions. Statist. Probab. Lett. 65 (2003), 263–268 | DOI | MR | Zbl

[14] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 | DOI | MR | Zbl

[15] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections. Insurance: Math. Econ. 42 (2008), 473–483 | DOI | MR | Zbl

[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Kendall distribution functions and associative copulas. Fuzzy Sets and Systems 160 (2009), 52–57 | MR | Zbl

[17] Sklar A.: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR

[18] Sklar A.: Random variables, joint distributions, and copulas. Kybernetika 9 (1973), 449–460 | MR

[19] Spearman C.: ‘Footrule’ for measuring correlation. British J. Psychology 2 (1906), 89–108