Keywords: conditioning; gluing; g-ordinal sum; construction of copulas
@article{KYB_2008_44_6_a5,
author = {Mesiar, Radko and J\'agr, Vladim{\'\i}r and Jur\'a\v{n}ov\'a , Monika and Komorn{\'\i}kov\'a, Magda},
title = {Univariate conditioning of copulas},
journal = {Kybernetika},
pages = {807--816},
year = {2008},
volume = {44},
number = {6},
mrnumber = {2488908},
zbl = {1196.62059},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a5/}
}
Mesiar, Radko; Jágr, Vladimír; Juráňová , Monika; Komorníková, Magda. Univariate conditioning of copulas. Kybernetika, Tome 44 (2008) no. 6, pp. 807-816. http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a5/
[1] Javid A. Ahmadi: Copulas with truncation-invariance property. Comm. Statist. A – Theory Methods, to appear | MR
[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation Operators: Properties, Classes and Construction Methods. (Studies in Fuzziness and Soft Computing – Aggregation Operators, New Trend and Applications.) Physica-Verlag, Heidelberg 2002, pp. 3–106 | MR | Zbl
[3] Charpentier A., Juri A.: Limiting dependence structures for tail events, with applications to credit derivatives. J. Appl. Probab. 43 (2006), 563–586 | DOI | MR | Zbl
[4] Durante F., Foschi, B., Spizzichino S.: Threshold copulas and positive dependence. Statist. Probab. Lett., to appear | MR | Zbl
[5] Durante F., Mesiar R., Papini P. L., Sempi C.: 2-Increasing binary aggregation operators. Inform. Sci. 177 (2007), 111–129 | DOI | MR | Zbl
[6] Durante F., Saminger-Platz, S., Sarkoci P.: On representations of 2-increasing binary aggregation functions. Inform. Sci. 178 (2008), 4534–4541 | DOI | MR | Zbl
[7] Durante F., Saminger-Platz, S., Sarkoci P.: Rectangular patchwork for bivariate copulas and tail dependence. Comm. Statist. A – Theory Methods, to appear | MR | Zbl
[8] Juri A., Wüthrich M. V.: Copula convergence theorems for tail events. Insurance Math. Econom. 30 (2002), 405–420 | DOI | MR | Zbl
[9] Juri A., Wüthrich M. V.: Tail dependence from a distributional point of view. Extreme 6 (2003), 213–246 | DOI | MR | Zbl
[10] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 3–14 | MR | Zbl
[11] Mesiar R., Szolgay J.: $W$-ordinal sums of copulas and quasi-copulas. In: Proc. MAGIA 2004 Conference, Kočovce 2004, pp. 78–83
[12] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, Berlin 2006 | MR | Zbl
[13] Siburg K. F., Stoimenov P. A.: Gluing copulas. Comm. Statist. A – Theory Methods 37 (2008), 3124–3134 | DOI | MR
[14] Sklar M.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR