Quasi-copulas with quadratic sections in one variable
Kybernetika, Tome 44 (2008) no. 6, pp. 879-890 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce and characterize the class of multivariate quasi-copulas with quadratic sections in one variable. We also present and analyze examples to illustrate our results.
We introduce and characterize the class of multivariate quasi-copulas with quadratic sections in one variable. We also present and analyze examples to illustrate our results.
Classification : 26B99, 60E05, 62H05
Keywords: 1-Lipschitz condition; copula; quasi-copula; quadratic sections
@article{KYB_2008_44_6_a10,
     author = {Rodr{\'\i}guez{\textendash}Lallena, Jos\'e Antonio and \'Ubeda-Flores, Manuel},
     title = {Quasi-copulas with quadratic sections in one variable},
     journal = {Kybernetika},
     pages = {879--890},
     year = {2008},
     volume = {44},
     number = {6},
     mrnumber = {2488913},
     zbl = {1181.62072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a10/}
}
TY  - JOUR
AU  - Rodríguez–Lallena, José Antonio
AU  - Úbeda-Flores, Manuel
TI  - Quasi-copulas with quadratic sections in one variable
JO  - Kybernetika
PY  - 2008
SP  - 879
EP  - 890
VL  - 44
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a10/
LA  - en
ID  - KYB_2008_44_6_a10
ER  - 
%0 Journal Article
%A Rodríguez–Lallena, José Antonio
%A Úbeda-Flores, Manuel
%T Quasi-copulas with quadratic sections in one variable
%J Kybernetika
%D 2008
%P 879-890
%V 44
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a10/
%G en
%F KYB_2008_44_6_a10
Rodríguez–Lallena, José Antonio; Úbeda-Flores, Manuel. Quasi-copulas with quadratic sections in one variable. Kybernetika, Tome 44 (2008) no. 6, pp. 879-890. http://geodesic.mathdoc.fr/item/KYB_2008_44_6_a10/

[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 | DOI | MR | Zbl

[2] Cuculescu I., Theodorescu R.: Copulas: diagonals and tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 | MR

[3] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Extremes of the mass distribution associated with a trivariate quasi-copula. C. R. Acad. Sci. Paris, Ser. I 344 (2007), 587–590 | DOI | MR | Zbl

[4] Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S.: Cyclic evaluation of transitivity of reciprocal relations. Soc. Choice Welf. 26 (2006), 217–238 | DOI | MR | Zbl

[5] Durante F., Quesada-Molina J. J., Úbeda-Flores M.: On a family of multivariate copulas for aggregation processes. Inform. Sci. 177 (2007), 5715–5724 | DOI | MR | Zbl

[6] Genest C., Quesada-Molina J. J., Rodríguez-Lallena J.A., Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 | DOI | MR | Zbl

[7] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas. Fuzzy Sets Syst. 148 (2004), 263–278 | MR | Zbl

[8] Klement E. P., Kolesárová A.: 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals. In: Soft Methodology and Random Information Systems (M. López-Díaz, M.A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 | MR | Zbl

[9] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators. Kybernetika 41 (2005), 329–348 | MR

[10] Klement E. P., Kolesárová A.: Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section. Monatsh. Math. 152 (2007), 151–167 | DOI | MR | Zbl

[11] Kolesárová A.: 1-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629 | MR

[12] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006 | MR | Zbl

[13] Nelsen R. B., Úbeda-Flores M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. C. R. Acad. Sci. Paris, Ser. I 341 (2005), 583–586 | DOI | MR | Zbl

[14] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate Archimedean quasi-copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez, eds.), Kluwer, Dordrecht 2002, pp. 179–185 | MR | Zbl

[15] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 | DOI | MR | Zbl

[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections. Insurance: Math. Econom. 42 (2008), 473–483 | DOI | MR | Zbl

[17] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions. In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), CA: IMS Lecture Notes – Monograph Series Number 28), Hayward 1996, pp. 233–243 | MR

[18] Quesada-Molina J. J., Rodríguez-Lallena J. A.: Bivariate copulas with quadratic sections. J. Nonparametr. Statist. 5 (1995), 323–337 | DOI | MR | Zbl

[19] Quesada-Molina J. J., Saminger-Platz, S., Sempi C.: Quasi-copulas with a given sub-diagonal section. Nonlinear Anal. 69 (2008), 4654–4673 | DOI | MR | Zbl

[20] Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of multivariate distribution functions. Comm. Statist. Theory Methods 33 (2004), 805–820 | MR | Zbl

[21] Rodríguez-Lallena J. A., Úbeda-Flores M.: Compatibility of three bivariate quasi-copulas: Applications to copulas. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Springer, Berlin 2004, pp. 173–180 | MR | Zbl

[22] Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate copulas with quadratic sections in one variable. To appear | MR | Zbl

[23] Rodríguez-Lallena J. A., Úbeda-Flores M.: Some new characterizations and properties of quasi-copulas. To appear in Fuzzy Sets and Systems.doi: 10.1016/j.fss.2008.02.007 | MR | Zbl

[24] Saminger S., Baets, B. De, Meyer H. De: On the dominance relation between ordinal sums of conjunctors. Kybernetika 42 (2006), 337–350 | MR

[25] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR

[26] Sklar A.: Random variables, joint distributions, and copulas. Kybernetika 9 (1973), 449–460 | MR

[27] Úbeda-Flores M.: A new family of trivariate proper quasi-copulas. Kybernetika 43 (2007), 75–85 | MR | Zbl