Keywords: SIR epidemic models; vaccination; differential equation
@article{KYB_2008_44_5_a6,
author = {Stan\v{e}k, Jakub},
title = {Kermack-McKendrick epidemics vaccinated},
journal = {Kybernetika},
pages = {705--714},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2479313},
zbl = {1177.92034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a6/}
}
Staněk, Jakub. Kermack-McKendrick epidemics vaccinated. Kybernetika, Tome 44 (2008) no. 5, pp. 705-714. http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a6/
[1] Amann H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. Walter de Gruyter, Berlin – New York 1990 | MR | Zbl
[2] Bailey N. T. J.: The Mathematical Theory of Epidemics. Hafner Publishing Company, New York 1957 | MR
[3] Daley D. J., Gani J.: Epidemic Modelling: An Introduction. Cambridge University Press, Cambridge 1999 | MR | Zbl
[4] Greenwood P., Gordillo L. F., Marion A. S., Martin-Löf A.: Bimodal Epidemic Side Distributions for Near-Critical SIR with Vaccination. In preparation
[5] Kalas J., Pospíšil Z.: Spojité modely v biologii (Continuous Models in Biology). Masaryk University, Brno 2001
[6] Kermack W. O., McKendrick A. G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London A 155 (1927), 700–721
[7] Štěpán J., Hlubinka D.: Kermack–McKendrick epidemic model revisited. Kybernetika 43 (2007), 395–414 | MR | Zbl
[8] Štěpán J.: Private communicatio.
[9] Wai-Yuan T., Hulin W.: Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention. World Scientific, Singapore 2005 | MR