Kermack-McKendrick epidemics vaccinated
Kybernetika, Tome 44 (2008) no. 5, pp. 705-714 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper proposes a deterministic model for the spread of an epidemic. We extend the classical Kermack–McKendrick model, so that a more general contact rate is chosen and a vaccination added. The model is governed by a differential equation (DE) for the time dynamics of the susceptibles, infectives and removals subpopulation. We present some conditions on the existence and uniqueness of a solution to the nonlinear DE. The existence of limits and uniqueness of maximum of infected individuals are also discussed. In the final part, simulations, numerical results and comparisons of the different vaccination strategies are presented.
This paper proposes a deterministic model for the spread of an epidemic. We extend the classical Kermack–McKendrick model, so that a more general contact rate is chosen and a vaccination added. The model is governed by a differential equation (DE) for the time dynamics of the susceptibles, infectives and removals subpopulation. We present some conditions on the existence and uniqueness of a solution to the nonlinear DE. The existence of limits and uniqueness of maximum of infected individuals are also discussed. In the final part, simulations, numerical results and comparisons of the different vaccination strategies are presented.
Classification : 34C60, 37N25, 62P10, 65C20, 92D25, 92D30
Keywords: SIR epidemic models; vaccination; differential equation
@article{KYB_2008_44_5_a6,
     author = {Stan\v{e}k, Jakub},
     title = {Kermack-McKendrick epidemics vaccinated},
     journal = {Kybernetika},
     pages = {705--714},
     year = {2008},
     volume = {44},
     number = {5},
     mrnumber = {2479313},
     zbl = {1177.92034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a6/}
}
TY  - JOUR
AU  - Staněk, Jakub
TI  - Kermack-McKendrick epidemics vaccinated
JO  - Kybernetika
PY  - 2008
SP  - 705
EP  - 714
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a6/
LA  - en
ID  - KYB_2008_44_5_a6
ER  - 
%0 Journal Article
%A Staněk, Jakub
%T Kermack-McKendrick epidemics vaccinated
%J Kybernetika
%D 2008
%P 705-714
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a6/
%G en
%F KYB_2008_44_5_a6
Staněk, Jakub. Kermack-McKendrick epidemics vaccinated. Kybernetika, Tome 44 (2008) no. 5, pp. 705-714. http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a6/

[1] Amann H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. Walter de Gruyter, Berlin – New York 1990 | MR | Zbl

[2] Bailey N. T. J.: The Mathematical Theory of Epidemics. Hafner Publishing Company, New York 1957 | MR

[3] Daley D. J., Gani J.: Epidemic Modelling: An Introduction. Cambridge University Press, Cambridge 1999 | MR | Zbl

[4] Greenwood P., Gordillo L. F., Marion A. S., Martin-Löf A.: Bimodal Epidemic Side Distributions for Near-Critical SIR with Vaccination. In preparation

[5] Kalas J., Pospíšil Z.: Spojité modely v biologii (Continuous Models in Biology). Masaryk University, Brno 2001

[6] Kermack W. O., McKendrick A. G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London A 155 (1927), 700–721

[7] Štěpán J., Hlubinka D.: Kermack–McKendrick epidemic model revisited. Kybernetika 43 (2007), 395–414 | MR | Zbl

[8] Štěpán J.: Private communicatio.

[9] Wai-Yuan T., Hulin W.: Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention. World Scientific, Singapore 2005 | MR