Keywords: Black–Scholes equation; volatility; controllability; observability; Carleman estimates
@article{KYB_2008_44_5_a5,
author = {Sakthivel, Kumarasamy and Balachandran, Krishnan and Sowrirajan, Rangarajan and Kim, Jeong-Hoon},
title = {On exact null controllability of {Black-Scholes} equation},
journal = {Kybernetika},
pages = {685--704},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2479312},
zbl = {1177.93021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a5/}
}
TY - JOUR AU - Sakthivel, Kumarasamy AU - Balachandran, Krishnan AU - Sowrirajan, Rangarajan AU - Kim, Jeong-Hoon TI - On exact null controllability of Black-Scholes equation JO - Kybernetika PY - 2008 SP - 685 EP - 704 VL - 44 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a5/ LA - en ID - KYB_2008_44_5_a5 ER -
Sakthivel, Kumarasamy; Balachandran, Krishnan; Sowrirajan, Rangarajan; Kim, Jeong-Hoon. On exact null controllability of Black-Scholes equation. Kybernetika, Tome 44 (2008) no. 5, pp. 685-704. http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a5/
[1] Adams R. A., Fournier J. F.: Sobolev Spaces. Second edition. Academic Press, New York 2003 | MR | Zbl
[2] Khodja F. Ammar, Benabdallah, A., Dupaix C.: Null controllability of some reaction diffusion systems with one control force. J. Math. Anal. Appl. 320 (2006), 928–943 | MR
[3] Amster P., Averbuj C. G., Mariani M. C.: Solutions to a stationary nonlinear Black–Scholes type equation. J. Math. Anal. Appl. 276 (2002), 231–238 | MR | Zbl
[4] Amster P., Averbuj C. G., Mariani M. C., Rial D.: A Black–Scholes option pricing model with transaction costs. J. Math. Anal. Appl. 303 (2005), 688–695 | MR | Zbl
[5] Anita S., Barbu V.: Null controllability of nonlinear convective heat equation. ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 157–173 | MR
[6] Barbu V.: Controllability of parabolic and Navier–Stokes equations. Scientiae Mathematicae Japonicae 56 (2002), 143–211 | MR | Zbl
[7] Black F., Scholes M.: The pricing of options and corporate liabilities. J. Political Economics 81 (1973), 637–659 | Zbl
[8] Bouchouev I., Isakov V.: The inverse problem of option pricing. Inverse Problems 13 (1997), L11–L17 | MR | Zbl
[9] Bouchouev I., Isakov V.: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets. Inverse problems 15 (1999), R95–R116 | MR | Zbl
[10] Chae D., Imanivilov, O. Yu., Kim M. S.: Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynamical Control Systems 2 (1996), 449–483 | MR
[11] Doubova A., Fernandez-Cara E., Gonzalez-Burgos, M., Zuazua E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41 (2002), 789–819 | MR | Zbl
[12] Egger H., Engl H. W.: Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates. Inverse Problems 21 (2005) 1027–1045 | MR | Zbl
[13] Fursikov A. V., Imanuvilov O. Yu.: Controllability of Evolution Equations. Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul 1996 | MR | Zbl
[14] Hörmander L.: Linear Partial Differential Operators I – IV. Springer–Verlag, Berlin 1985
[15] Imanuvilov O. Yu.: Boundary controllability of parabolic equations. Sbornik Mathematics 187 (1995), 879–900 | MR
[16] Imanuvilov O. Yu., Yamamoto M.: Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39 (2003), 227–274 | MR | Zbl
[17] Ingber L., Wilson J. K.: Statistical mechanics of financial markets: Exponential modifications to Black–Scholes. Mathematical and Computer Modelling 31 (2000) 167–192 | MR | Zbl
[18] Jódar L., Sevilla-Peris P., Cortes J. C., Sala R.: A new direct method for solving the Black–Scholes equations. Appl. Math. Lett. 18 (2005), 29–32 | MR
[19] Kangro R., Nicolaides R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38 (2000), 1357–1368 | MR | Zbl
[20] Sakthivel K., Balachandran, K., Sritharan S. S.: Controllability and observability theory of certain parabolic integro-differential equations. Comput. Math. Appl. 52 (2006), 1299–1316 | MR
[21] Sakthivel K., Balachandran, K., Lavanya R.: Exact controllability of partial integrodifferential equations with mixed boundary conditions. J. Math. Anal. Appl. 325 (2007), 1257–1279 | MR | Zbl
[22] Sowrirajan R., Balachandran K.: Determination of a source term in a partial differential equation arising in finance. Appl. Anal. (to appear) | MR | Zbl
[23] Widdicks M., Duck P. W., Andricopoulos A. D., Newton D. P.: The Black–Scholes equation revisited: Asymptotic expansions and singular perturbations. Mathematical Finance 15 (2005), 373–371 | MR | Zbl
[24] Wilmott I., Howison, S., Dewynne J.: The Mathematics of Financial Derivatives. Cambridge University Press, Cambridge 1995 | MR | Zbl