On exact null controllability of Black-Scholes equation
Kybernetika, Tome 44 (2008) no. 5, pp. 685-704 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we discuss the exact null controllability of linear as well as nonlinear Black–Scholes equation when both the stock volatility and risk-free interest rate influence the stock price but they are not known with certainty while the control is distributed over a subdomain. The proof of the linear problem relies on a Carleman estimate and observability inequality for its own dual problem and that of the nonlinear one relies on the infinite dimensional Kakutani fixed point theorem with $L^2$ topology.
In this paper we discuss the exact null controllability of linear as well as nonlinear Black–Scholes equation when both the stock volatility and risk-free interest rate influence the stock price but they are not known with certainty while the control is distributed over a subdomain. The proof of the linear problem relies on a Carleman estimate and observability inequality for its own dual problem and that of the nonlinear one relies on the infinite dimensional Kakutani fixed point theorem with $L^2$ topology.
Classification : 45K05, 47N10, 91B28, 91G10, 93B05, 93C20, 93E03
Keywords: Black–Scholes equation; volatility; controllability; observability; Carleman estimates
@article{KYB_2008_44_5_a5,
     author = {Sakthivel, Kumarasamy and Balachandran, Krishnan and Sowrirajan, Rangarajan and Kim, Jeong-Hoon},
     title = {On exact null controllability of {Black-Scholes} equation},
     journal = {Kybernetika},
     pages = {685--704},
     year = {2008},
     volume = {44},
     number = {5},
     mrnumber = {2479312},
     zbl = {1177.93021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a5/}
}
TY  - JOUR
AU  - Sakthivel, Kumarasamy
AU  - Balachandran, Krishnan
AU  - Sowrirajan, Rangarajan
AU  - Kim, Jeong-Hoon
TI  - On exact null controllability of Black-Scholes equation
JO  - Kybernetika
PY  - 2008
SP  - 685
EP  - 704
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a5/
LA  - en
ID  - KYB_2008_44_5_a5
ER  - 
%0 Journal Article
%A Sakthivel, Kumarasamy
%A Balachandran, Krishnan
%A Sowrirajan, Rangarajan
%A Kim, Jeong-Hoon
%T On exact null controllability of Black-Scholes equation
%J Kybernetika
%D 2008
%P 685-704
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a5/
%G en
%F KYB_2008_44_5_a5
Sakthivel, Kumarasamy; Balachandran, Krishnan; Sowrirajan, Rangarajan; Kim, Jeong-Hoon. On exact null controllability of Black-Scholes equation. Kybernetika, Tome 44 (2008) no. 5, pp. 685-704. http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a5/

[1] Adams R. A., Fournier J. F.: Sobolev Spaces. Second edition. Academic Press, New York 2003 | MR | Zbl

[2] Khodja F. Ammar, Benabdallah, A., Dupaix C.: Null controllability of some reaction diffusion systems with one control force. J. Math. Anal. Appl. 320 (2006), 928–943 | MR

[3] Amster P., Averbuj C. G., Mariani M. C.: Solutions to a stationary nonlinear Black–Scholes type equation. J. Math. Anal. Appl. 276 (2002), 231–238 | MR | Zbl

[4] Amster P., Averbuj C. G., Mariani M. C., Rial D.: A Black–Scholes option pricing model with transaction costs. J. Math. Anal. Appl. 303 (2005), 688–695 | MR | Zbl

[5] Anita S., Barbu V.: Null controllability of nonlinear convective heat equation. ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 157–173 | MR

[6] Barbu V.: Controllability of parabolic and Navier–Stokes equations. Scientiae Mathematicae Japonicae 56 (2002), 143–211 | MR | Zbl

[7] Black F., Scholes M.: The pricing of options and corporate liabilities. J. Political Economics 81 (1973), 637–659 | Zbl

[8] Bouchouev I., Isakov V.: The inverse problem of option pricing. Inverse Problems 13 (1997), L11–L17 | MR | Zbl

[9] Bouchouev I., Isakov V.: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets. Inverse problems 15 (1999), R95–R116 | MR | Zbl

[10] Chae D., Imanivilov, O. Yu., Kim M. S.: Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynamical Control Systems 2 (1996), 449–483 | MR

[11] Doubova A., Fernandez-Cara E., Gonzalez-Burgos, M., Zuazua E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41 (2002), 789–819 | MR | Zbl

[12] Egger H., Engl H. W.: Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates. Inverse Problems 21 (2005) 1027–1045 | MR | Zbl

[13] Fursikov A. V., Imanuvilov O. Yu.: Controllability of Evolution Equations. Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul 1996 | MR | Zbl

[14] Hörmander L.: Linear Partial Differential Operators I – IV. Springer–Verlag, Berlin 1985

[15] Imanuvilov O. Yu.: Boundary controllability of parabolic equations. Sbornik Mathematics 187 (1995), 879–900 | MR

[16] Imanuvilov O. Yu., Yamamoto M.: Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39 (2003), 227–274 | MR | Zbl

[17] Ingber L., Wilson J. K.: Statistical mechanics of financial markets: Exponential modifications to Black–Scholes. Mathematical and Computer Modelling 31 (2000) 167–192 | MR | Zbl

[18] Jódar L., Sevilla-Peris P., Cortes J. C., Sala R.: A new direct method for solving the Black–Scholes equations. Appl. Math. Lett. 18 (2005), 29–32 | MR

[19] Kangro R., Nicolaides R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38 (2000), 1357–1368 | MR | Zbl

[20] Sakthivel K., Balachandran, K., Sritharan S. S.: Controllability and observability theory of certain parabolic integro-differential equations. Comput. Math. Appl. 52 (2006), 1299–1316 | MR

[21] Sakthivel K., Balachandran, K., Lavanya R.: Exact controllability of partial integrodifferential equations with mixed boundary conditions. J. Math. Anal. Appl. 325 (2007), 1257–1279 | MR | Zbl

[22] Sowrirajan R., Balachandran K.: Determination of a source term in a partial differential equation arising in finance. Appl. Anal. (to appear) | MR | Zbl

[23] Widdicks M., Duck P. W., Andricopoulos A. D., Newton D. P.: The Black–Scholes equation revisited: Asymptotic expansions and singular perturbations. Mathematical Finance 15 (2005), 373–371 | MR | Zbl

[24] Wilmott I., Howison, S., Dewynne J.: The Mathematics of Financial Derivatives. Cambridge University Press, Cambridge 1995 | MR | Zbl