Keywords: system identification; errors-in-variables models; Frisch scheme; linear systems
@article{KYB_2008_44_5_a0,
author = {Guidorzi, Roberto and Diversi, Roberto and Soverini, Umberto},
title = {The {Frisch} scheme in algebraic and dynamic identification problems},
journal = {Kybernetika},
pages = {585--616},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2479307},
zbl = {1177.93089},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a0/}
}
Guidorzi, Roberto; Diversi, Roberto; Soverini, Umberto. The Frisch scheme in algebraic and dynamic identification problems. Kybernetika, Tome 44 (2008) no. 5, pp. 585-616. http://geodesic.mathdoc.fr/item/KYB_2008_44_5_a0/
[1] Abed-Meraim K., Qiu, W., Hua Y.: Blind system identification. Proc. IEEE 85 (1997), 1310–1322
[2] Anderson B. D. O., Deistler M.: Identifiability of dynamic errors-in-variables models. J. Time Ser. Anal. 5 (1984), 1–13 | MR
[3] Anderson B. D. O., Deistler, M., Scherrer W.: Solution set properties for static errors-in-variables problems. Automatica 32 (1996), 1031–1035 | MR | Zbl
[4] Beghelli S., Castaldi P., Guidorzi, R., Soverini U.: A robust criterion for model selection in identification from noisy data. In: Proc. 9th International Conference on Systems Engineering, Las Vegas 1993, pp. 480–484
[5] Beghelli S., Guidorzi, R., Soverini U.: The Frisch scheme in dynamic system identification. Automatica 26 (1990), 171–176 | MR | Zbl
[6] Bobillet W., Grivel E., Guidorzi, R., Najim M.: Noisy speech de-reverberation as a SIMO system identification issue. In: Proc. IEEE Workshop on Statistical Signal Processing, Bordeaux 2005
[7] Bobillet W., Diversi R., Grivel E., Guidorzi R., Najim, M., Soverini U.: Speech enhancement combining optimal smoothing and errors-in-variables identification of noisy AR processes. IEEE Trans. Signal Process. 55 (2007), 5564–5578 | MR
[8] Deistler M.: Linear errors-in-variables models. In: Time Series and Linear Systems (Lecture Notes in Control and Information Sciences; S. Bittanti, ed.). Springer–Verlag, Berlin 1986, pp. 37–67 | MR
[9] Diversi R., Guidorzi, R., Soverini U.: A new criterion in EIV identification and filtering applications. In: Preprints 13th IFAC Symposium on System Identification, Rotterdam 2003, pp. 1993–1998
[10] Diversi R., Guidorzi, R., Soverini U.: Frisch scheme-based algorithms for EIV identification. In: Proc. 12th IEEE Mediterranean Conference on Control and Automation, Kusadasi 2004
[11] Diversi R., Guidorzi, R., Soverini U.: Blind identification and equalization of two-channel FIR systems in unbalanced noise environments. Signal Process. 85 (2005), 215–225 | Zbl
[12] Diversi R., Guidorzi, R., Soverini U.: A noise-compensated estimation scheme for AR processes. In: Proc. 44th IEEE Conference on Decision and Control and 8th European Control Conference, Seville 2005, pp. 4146–4151
[13] Diversi R., Guidorzi, R., Soverini U.: Yule–Walker equations in the Frisch scheme solution of errors-in-variables identification problems. In: Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 391–395
[14] Diversi R., Guidorzi, R., Soverini U.: Identification of autoregressive models in the presence of additive noise. International J. Adaptive Control and Signal Process. 22 (2008), 465–481 | MR
[15] Diversi R., Soverini, U., Guidorzi R.: A new estimation approach for AR models in presence of noise. In: Preprints 16th IFAC World Congress, Prague 2005 | MR
[16] Fernando K. V., Nicholson H.: Identification of linear systems with input and output noise: the Koopmans–Levin method. IEE Proc. 132 (1985), 30–36 | Zbl
[17] Frisch R.: Statistical Confluence Analysis by Means of Complete Regression Systems. Economic Institute, Pub. No. 5, Oslo University 1934 | Zbl
[18] Guidorzi R.: Equivalence, invariance and dynamical system canonical modelling. Part I, Kybernetika 25 (1989), 233–257, Part II, Kybernetika 25 (1989), 386–407 | Zbl
[19] Guidorzi R.: Certain models from uncertain data: the algebraic case. Systems Control Lett. 17 (1991), 415–424 | MR | Zbl
[20] Guidorzi R.: Errors-in-variables identification and model uniqueness. In: Statistical Modelling and Latent Variables (K. Haagen, D. J. Bartholomew, and M. Deistler, eds.), North Holland, Amsterdam 1993, pp. 127–150 | MR
[21] Guidorzi R.: Identification of the maximal number of linear relations from noisy data. Systems Control Lett. 24 (1995), 159–166 | MR | Zbl
[22] Guidorzi R.: Identification of multivariable processes in the Frisch scheme context. MTNS’96, St. Louis 1996
[23] Guidorzi R., Diversi R.: Determination of linear relations from real data in the Frisch scheme context. In: Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 530–535
[24] Guidorzi R., Diversi, R., Soverini U.: Blind identification and equalization of multichannel FIR systems in unbalanced noise environments. Signal Process. 87 (2007), 654–664 | Zbl
[25] Guidorzi R., Diversi R., Soverini, U., Valentini A.: A noise signature approach to fault detection and isolation. In: Proc. 16th International Symposium on Mathematical Theory of Networks and Systems, Leuven 2004
[26] Guidorzi R., Pierantoni M.: A new parametrization of Frisch scheme solutions. In: Proc. XII International Conference on Systems Science, Wroclaw 1995, pp. 114–120
[27] Guidorzi R., Soverini, U., Diversi R.: Multivariable EIV identification. In: Proc. 10th IEEE Mediterranean Conference on Control and Automation, Lisboa 2002
[28] Guidorzi R., Stoian A.: On the computation of the maximal corank of a covariance matrix under the Frisch scheme. In: Proc. 10th IFAC Symposium on System Identification, Copenhagen 1994, pp. 171–173
[29] Kalman R. E.: Identification from real data. In: Current Developments in the Interface: Economics, Econometrics, Mathematics (M. Hazewinkel, H. G. Rinnooy Kan, and D. Reidel, eds.), Dordrecht 1982, pp. 161–196
[30] Kalman R. E.: Nine Lectures on Identification. (Lecture Notes on Economics and Mathematical Systems.) Springer–Verlag, Berlin (to appear)
[31] Kalman R. E.: System identification from noisy data. In: Dynamical Systems II (A. R. Bednarek and L. Cesari, eds.), Academic Press 1982, pp. 135–164 | MR
[32] Kay S. M.: The effects of noise on the autoregressive spectral estimator. IEEE Trans. Acoustics, Speech and Signal Process. 27 (1979), 478–485 | Zbl
[33] Kay S. M.: Noise compensation for autoregressive spectral estimates. IEEE Trans. Acoustics, Speech and Signal Process. 28 (1980), 292–303 | Zbl
[34] Levin M. J.: Estimation of a system pulse transfer function in the presence of noise. IEEE Trans. Automat. Control 9 (1964), 229–235
[35] Malinvaud E.: Méthodes statistiques de l’économétrie. Third edition. Dunod, Paris 1980 | Zbl
[36] Schachermayer W., Deistler M.: The set of observationally equivalent errors-in-variables models. Systems Control Lett. 34 (1998), 101–104 | MR | Zbl
[37] Söderström T.: Errors-in-variables methods in system identification. Automatica 43 (2007), 939–958 | MR | Zbl
[38] Söderström T.: Accuracy analysis of the Frisch estimates for identifying errors-in-variables systems. IEEE Trans. Automat. Control 52 (2007), 985–997 | MR
[39] Stoica P., Nehorai A.: On the uniqueness of prediction error models for systems with noisy input-output data. Automatica 23 (1987), 541–543 | Zbl
[40] Tong L., Perreau S.: Multichannel blind identification: from subspace to maximum likelihood methods. Proc. IEEE 86 (1998), 1951–1968
[41] (ed.) S. Van Huffel: Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modelling. SIAM, Philadelphia 1997 | MR
[42] Huffel S. Van, (eds.) P. Lemmerling: Total Least Squares and Errors-in-Variables Modelling: Analysis, Algorithms and Applications. Kluwer Academic Publishers, Dordrecht 2002 | MR
[43] Woodgate K. G.: An upper bound on the number of linear relations identified from noisy data by the Frisch scheme. Systems Control Lett. 24 (1995), 153–158 | MR | Zbl