Partial generalized synchronization theorems of differential and discrete systems
Kybernetika, Tome 44 (2008) no. 4, pp. 511-521 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper presents two theorems for designing controllers to achieve directional partial generalized synchronization (PGS) of two independent (chaotic) differential equation systems or two independent (chaotic) discrete systems. Two numerical simulation examples are given to illustrate the effectiveness of the proposed theorems. It can be expected that these theorems provide new tools for understanding and studying PGS phenomena and information encryption.
This paper presents two theorems for designing controllers to achieve directional partial generalized synchronization (PGS) of two independent (chaotic) differential equation systems or two independent (chaotic) discrete systems. Two numerical simulation examples are given to illustrate the effectiveness of the proposed theorems. It can be expected that these theorems provide new tools for understanding and studying PGS phenomena and information encryption.
Classification : 34K23, 34K99
Keywords: partial generalized synchronization; differential system; discrete system
@article{KYB_2008_44_4_a6,
     author = {Jing, Jianyi and Min, Lequan and Zhao, Geng},
     title = {Partial generalized synchronization theorems of differential and discrete systems},
     journal = {Kybernetika},
     pages = {511--521},
     year = {2008},
     volume = {44},
     number = {4},
     mrnumber = {2459069},
     zbl = {1234.34037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a6/}
}
TY  - JOUR
AU  - Jing, Jianyi
AU  - Min, Lequan
AU  - Zhao, Geng
TI  - Partial generalized synchronization theorems of differential and discrete systems
JO  - Kybernetika
PY  - 2008
SP  - 511
EP  - 521
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a6/
LA  - en
ID  - KYB_2008_44_4_a6
ER  - 
%0 Journal Article
%A Jing, Jianyi
%A Min, Lequan
%A Zhao, Geng
%T Partial generalized synchronization theorems of differential and discrete systems
%J Kybernetika
%D 2008
%P 511-521
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a6/
%G en
%F KYB_2008_44_4_a6
Jing, Jianyi; Min, Lequan; Zhao, Geng. Partial generalized synchronization theorems of differential and discrete systems. Kybernetika, Tome 44 (2008) no. 4, pp. 511-521. http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a6/

[1] Afraimovich V. S., Verichev N. N., Rabinovich M. I.: Stochastically synchronized oscillation in dissipative systems. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 29 (1986), 1050–1060 | MR

[2] Agiza H. N., Yassen M. T.: Synchronization of Rossler and Chen chaotic dynamiacal systems using active control. Phys. Lett. A 278 (2000), 191–197 | DOI | MR

[3] Blekman I. I., Fradkov A. I., Nijmeijer, H., Pogromsky A. Y.: On self-synchron- ization and controlled synchronization. Systems Control Lett. 31 (1997), 299–305 | DOI | MR

[4] Celikovský S., Chen G.: Secure Synchronization of a class of chaotic systems from a nonlinear observer approach. IEEE Trans. Automat. Control 50 (2005), 76–82 | DOI | MR

[5] Chen G., Dong X.: From Chaos to Order: Methodologies, Perspectives, and Applications. World Scientific, Singapore 1998 | MR | Zbl

[6] Chen G., Mao, Y., Chui C.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons and Fractals 21 (2004), 749–761 | DOI | MR | Zbl

[8] Grassi G., Mascolo S.: Synchronization of highorder oscillators by observer design with application to hyperchaos-based cryptography. Internat. J. Circuit Theory Appl. 27 (1999), 543–553 | DOI

[9] Hunt B. R., Ott, E., York J. A.: Differentiable generalized synchronization of chaos. Phys. Rev. E 55 (1997), 4029–4034 | DOI | MR

[10] Itoh M., Chua L. O.: Reconstruction and synchronization of hyperchaotic circuit via one state variable. Internat. J. Bifurcation Chaos 12 (2002), 2069–2085 | DOI | MR

[11] Jing J., Min L.: Partial generalized synchronization theorem of discrete system with application in encryption scheme. In: Proc. Internat. Conference on Communications, Circuit and Systems, Kokura, Fukuoka 2007, Vol. I, pp. 51–55

[12] Kocarev L., Parlitz U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76 (1996), 1816–1819 | DOI

[13] Lau F. C. M., Tse C. K.: Chaos-Based Digital Communication Systems. Springer, Berlin 2003 | Zbl

[14] Liu J. M., Tang S.: Chaotic optical communications using synchronized semiconductor lasers with optoelectronic feedback. Comptes Rendus Physique 5 (2004), 654–668

[15] Min L., Chen, G., al. X. Zhang et: Approach to generalized synchronization with application to chaos-based secure communication. Commun. Theory Physics 41 (2004), 632–640 | MR | Zbl

[16] Murali K., Laskshmanan M.: Secure communication using a compound signal from generalized synchronizable systems. Phys. Lett. 241 (1998), 303–310 | DOI

[17] Pecora L. M., Carroll T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821–824 | DOI | MR | Zbl

[18] Pogromsky A., Santoboni, G., Nijmeijer H.: Partial synchronization: from symmetry toward stability. Physica D 172 (2002), 65–87 | DOI | MR

[19] Rucklidge A. M.: Chaos in models of double convection. J. Fluid Mechanics 237 (1992), 209–229 | DOI | MR | Zbl

[20] Santoboni G., Pogromsky, A., Nijmeijer H.: An observer for phase synchronization of chaos. Phys. Lett. A 291 (2001), 265–273 | DOI | Zbl

[21] Santoboni G., Pogromsky, A., Nijmeijer H.: Partial observer and partial synchronization. Internat. J. Bifurcation and Chaos 13 (2003), 453–458 | DOI | MR

[22] Santoboni G., Pogromsky, A., Nijmeijer H.: An observer for phase synchronization of chaos. Chaos 13 (2003), 356–363 | MR | Zbl

[23] Sprott J. C.: Simplest dissipative chaotic flow. Phys. Lett. A 228 (1997), 271–274 | DOI | MR | Zbl

[24] Wu C. W., Chua L. O.: Transmission of digital signals by chaotic synchronization. Internat. J. Bifurcation and Chaos 3 (1993), 1619–1627

[25] Yang T., Chua L. O.: Channe-independent chaotic secure communication. Internat. J. Bifurcation and Chaos 6 (1996), 2653–2660 | DOI

[26] Yang T., Chua L. O.: Generalized synchronization of chaos via linear transformations. Internat. J. Bifurcation Chaos 9 (1999), 215–219 | DOI | MR | Zbl

[27] Zhang X., Min L.: A Generalized chaos synchronization based encryption algorithm for sound. Circuits Systems Signal Process. 24 (2005), 535–548 | MR | Zbl

[28] Zang H., Min, L., Zhao G.: A generalized synchronization theorem for discrete-time chaos system with application in data encryption scheme. In: Proc. Internat. Conference on Communications, Circuit and Systems, Fukuoka 2007, Vol. II, pp. 1325–1329