Keywords: chaotic system; generalized synchronization; configuration of poles; synchronous velocity
@article{KYB_2008_44_4_a4,
author = {Zhu, Zhiliang and Li, Shuping and Yu, Hai},
title = {A new approach to generalized chaos synchronization based on the stability of the error system},
journal = {Kybernetika},
pages = {492--500},
year = {2008},
volume = {44},
number = {4},
mrnumber = {2459067},
zbl = {1172.93015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a4/}
}
TY - JOUR AU - Zhu, Zhiliang AU - Li, Shuping AU - Yu, Hai TI - A new approach to generalized chaos synchronization based on the stability of the error system JO - Kybernetika PY - 2008 SP - 492 EP - 500 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a4/ LA - en ID - KYB_2008_44_4_a4 ER -
Zhu, Zhiliang; Li, Shuping; Yu, Hai. A new approach to generalized chaos synchronization based on the stability of the error system. Kybernetika, Tome 44 (2008) no. 4, pp. 492-500. http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a4/
[1] Carroll L., Pecora M.: Synchronizing chaotic circuits. IEEE Trans. Circuits and Systems 38 (2001), 4, 453–456 | Zbl
[2] Chua L. O.: Experimental chaos synchronization in Chua’s circuit. Internat. J. Bifurc. Chaos 2 (2002), 3, 705–708 | Zbl
[3] Dachselt F., Schwarz W.: Chaos and cryptography. IEEE Trans. Circuits and Systems, Fundamental Theory and Applications 48 (2001), 12, 1498–1509 | MR | Zbl
[4] Elabbasy E. M., Agiza H. N., El-Dessoky M. M.: Controlling and synchronization of Rossler system with uncertain parameters. Internat. J. Nonlinear Sciences and Numerical Simulation 5 (2005), 2, 171–181 | MR
[5] Fang J. Q.: Control and synchronization of chaos in nonlinear systems and prospects for application 2. Progr. Physics 16 (1996), 2, 174–176
[6] Fang J. Q.: Mastering Chaos and Development High-tech. Atomic Energy Press, Beijing, 2002
[7] Gao Y., Weng J. Q., al. X. S. Luo et: Generalized synchronization of hyperchaotic circuit. J. Electronics 6 (2002), 24. 855–959
[8] Kapitaniak T.: Experimental synchronization of chaos using continuous control. Internat. J. Bifurc. Chaos 4 (2004), 2, 483–488 | Zbl
[9] Kocarev L., Parlitz U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 11 (1996), 76, 1816–1819
[10] Lorenz E. N.: Deterministic nonperiodic flow. J. Atmospheric Sci. 20 (1963), 1. 130–141
[11] Pecora M., Carroll L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 8, 821–823 | MR | Zbl
[12] Pecora M., Carroll L.: Driving systems with chaotic signals. Phys. Rev. A 44 (2001), 4, 2374–2383
[13] Yang T., Chua L. O.: Generalized synchronization of chaos via linear transformations. Internat. J. Bifur. Chaos 9 (1999), 1, 215–219 | MR | Zbl