Keywords: phase-space reconstruction; embedding window; delay time; time series
@article{KYB_2008_44_4_a10,
author = {Cai, Wei-Dong and Qin, Yi-Qing and Yang, Bing-Ru},
title = {Determination of phase-space reconstruction parameters of chaotic time series},
journal = {Kybernetika},
pages = {557--570},
year = {2008},
volume = {44},
number = {4},
mrnumber = {2459073},
zbl = {1179.37048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a10/}
}
TY - JOUR AU - Cai, Wei-Dong AU - Qin, Yi-Qing AU - Yang, Bing-Ru TI - Determination of phase-space reconstruction parameters of chaotic time series JO - Kybernetika PY - 2008 SP - 557 EP - 570 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a10/ LA - en ID - KYB_2008_44_4_a10 ER -
Cai, Wei-Dong; Qin, Yi-Qing; Yang, Bing-Ru. Determination of phase-space reconstruction parameters of chaotic time series. Kybernetika, Tome 44 (2008) no. 4, pp. 557-570. http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a10/
[1] Grassberger P., Procaccia I.: Measure the strangeness of strange attractors. Physica D 9 (1983), 189–208 | MR
[2] Huang R. S.: Chaos and Application. Wuhan University Press, Wuhan 2000
[3] Kim H. S., Eykholt, R., Salas J. D.: Nonlinear dynamics, delay times, and embedding windows. Physica D 127 (1999), 48–60 | Zbl
[4] Lu J. H., Lu J. A., Chen S. H.: Analysis and Application of Chaotic Time Series. Wuhan University Press, Wuhan 2002
[6] Ma H. G., Li X. H., Wang G. H.: Selection of embedding dimension and delay time in phase space reconstruction. J. Xi’an Jiaotong University 38 (2004), 335–338
[7] Small M., Tse C. K.: Optimal embedding parameters: A modeling paradigm. Physica D: Nonlinear Phenomena 194 (2004), 283–296 | MR
[9] Sauer T., Yorke J. A., Casdagli M.: Embedology. J. Statist. Phys. 65 (1991), 579–616 | MR | Zbl
[10] Takens F.: Detecting Strange Attractors in Turbulence. Dynamical Systems and Turbulence. (Lecture Notes in Mathematics 898.) Springer-Verlag, Berlin 1981, pp. 366–381 | MR | Zbl
[11] Takens F.: On the Numerical Determination of the Dimension of an Attractor. Dynamical System and Turbulence. (Lecture Notes in Mathematics 1125.) Springer-Verlag, Berlin 1985, pp. 99–106 | MR | Zbl
[12] Wang Y., Xu W.: The methods and performance of phase space reconstruction for the time series in Lorenz system. J. Vibration Engrg. 19 (2006), 277–282
[13] Xiu C. B., Liu X. D., Zhang Y. H.: Selection of embedding dimension and delay time in the phase space reconstruction. Trans. Beijing Institute of Technology 23 (2003), 219–224
[14] Zhang Y., Ren C. L.: The methods to confirm the dimension of re-constructed phase space. J. National University of Defense Technology 27 (2005), 101–105