Determination of phase-space reconstruction parameters of chaotic time series
Kybernetika, Tome 44 (2008) no. 4, pp. 557-570 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A new method called C-C-1 method is suggested, which can improve some drawbacks of the original C-C method. Based on the theory of period N, a new quantity S(t) for estimating the delay time window of a chaotic time series is given via direct computing a time-series quantity S(m,N,r,t), from which the delay time window can be found. The optimal delay time window is taken as the first period of the chaotic time series with a local minimum of S(t). Only the first local minimum of the average of a quantity Δ S2(t) is needed to ascertain the optimal delay time. The parameter of the C-C method - embedding dimension $m$ - is adjusted rationally. In the new method, the estimates of the optimal delay time and the optimal delay time window are more appropriate. The robustness of the C-C-1 method reaches 40
A new method called C-C-1 method is suggested, which can improve some drawbacks of the original C-C method. Based on the theory of period N, a new quantity S(t) for estimating the delay time window of a chaotic time series is given via direct computing a time-series quantity S(m,N,r,t), from which the delay time window can be found. The optimal delay time window is taken as the first period of the chaotic time series with a local minimum of S(t). Only the first local minimum of the average of a quantity Δ S2(t) is needed to ascertain the optimal delay time. The parameter of the C-C method - embedding dimension $m$ - is adjusted rationally. In the new method, the estimates of the optimal delay time and the optimal delay time window are more appropriate. The robustness of the C-C-1 method reaches 40
Classification : 37D45, 37M10, 62M10, 62M15
Keywords: phase-space reconstruction; embedding window; delay time; time series
@article{KYB_2008_44_4_a10,
     author = {Cai, Wei-Dong and Qin, Yi-Qing and Yang, Bing-Ru},
     title = {Determination of phase-space reconstruction parameters of chaotic time series},
     journal = {Kybernetika},
     pages = {557--570},
     year = {2008},
     volume = {44},
     number = {4},
     mrnumber = {2459073},
     zbl = {1179.37048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a10/}
}
TY  - JOUR
AU  - Cai, Wei-Dong
AU  - Qin, Yi-Qing
AU  - Yang, Bing-Ru
TI  - Determination of phase-space reconstruction parameters of chaotic time series
JO  - Kybernetika
PY  - 2008
SP  - 557
EP  - 570
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a10/
LA  - en
ID  - KYB_2008_44_4_a10
ER  - 
%0 Journal Article
%A Cai, Wei-Dong
%A Qin, Yi-Qing
%A Yang, Bing-Ru
%T Determination of phase-space reconstruction parameters of chaotic time series
%J Kybernetika
%D 2008
%P 557-570
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a10/
%G en
%F KYB_2008_44_4_a10
Cai, Wei-Dong; Qin, Yi-Qing; Yang, Bing-Ru. Determination of phase-space reconstruction parameters of chaotic time series. Kybernetika, Tome 44 (2008) no. 4, pp. 557-570. http://geodesic.mathdoc.fr/item/KYB_2008_44_4_a10/

[1] Grassberger P., Procaccia I.: Measure the strangeness of strange attractors. Physica D 9 (1983), 189–208 | MR

[2] Huang R. S.: Chaos and Application. Wuhan University Press, Wuhan 2000

[3] Kim H. S., Eykholt, R., Salas J. D.: Nonlinear dynamics, delay times, and embedding windows. Physica D 127 (1999), 48–60 | Zbl

[4] Lu J. H., Lu J. A., Chen S. H.: Analysis and Application of Chaotic Time Series. Wuhan University Press, Wuhan 2002

[6] Ma H. G., Li X. H., Wang G. H.: Selection of embedding dimension and delay time in phase space reconstruction. J. Xi’an Jiaotong University 38 (2004), 335–338

[7] Small M., Tse C. K.: Optimal embedding parameters: A modeling paradigm. Physica D: Nonlinear Phenomena 194 (2004), 283–296 | MR

[9] Sauer T., Yorke J. A., Casdagli M.: Embedology. J. Statist. Phys. 65 (1991), 579–616 | MR | Zbl

[10] Takens F.: Detecting Strange Attractors in Turbulence. Dynamical Systems and Turbulence. (Lecture Notes in Mathematics 898.) Springer-Verlag, Berlin 1981, pp. 366–381 | MR | Zbl

[11] Takens F.: On the Numerical Determination of the Dimension of an Attractor. Dynamical System and Turbulence. (Lecture Notes in Mathematics 1125.) Springer-Verlag, Berlin 1985, pp. 99–106 | MR | Zbl

[12] Wang Y., Xu W.: The methods and performance of phase space reconstruction for the time series in Lorenz system. J. Vibration Engrg. 19 (2006), 277–282

[13] Xiu C. B., Liu X. D., Zhang Y. H.: Selection of embedding dimension and delay time in the phase space reconstruction. Trans. Beijing Institute of Technology 23 (2003), 219–224

[14] Zhang Y., Ren C. L.: The methods to confirm the dimension of re-constructed phase space. J. National University of Defense Technology 27 (2005), 101–105