Keywords: non-classical logics; effect algebras; MV-algebras; blocks; states
@article{KYB_2008_44_3_a11,
author = {Rie\v{c}anov\'a, Zdenka},
title = {The existence of states on every {Archimedean} atomic lattice effect algebra with at most five blocks},
journal = {Kybernetika},
pages = {430--440},
year = {2008},
volume = {44},
number = {3},
mrnumber = {2436042},
zbl = {1154.06301},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_3_a11/}
}
Riečanová, Zdenka. The existence of states on every Archimedean atomic lattice effect algebra with at most five blocks. Kybernetika, Tome 44 (2008) no. 3, pp. 430-440. http://geodesic.mathdoc.fr/item/KYB_2008_44_3_a11/
[1] Beltrametti E. G., Cassinelli G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading, MA 1981 | MR | Zbl
[2] Benett M. K., Foulis D. J.: Interval and scale effect algebras. Advan. Math. 19 (1997), 200–215 | MR
[3] Bruns G.: Block-finite orthomodular lattices. Canad. J. Math. 31 (1979), 961–985 | MR | Zbl
[4] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 | MR | Zbl
[5] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 | MR
[6] Gudder S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30 | MR | Zbl
[7] Gudder S. P.: S-dominating effect algebras. Internat. J. Theoret. Phys. 37 (1998), 915–923 | MR | Zbl
[8] Höhle U., (eds.) E. P. Klement: Non-Classical Logics and their Applications to Fuzzy Subsets, Vol. 32. Kluwer Academic Publishers, Dordrecht 1998 | MR
[9] Jenča G., Riečanová Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29
[10] Kalmbach G.: Orthomodular Lattices. Academic Press, London – New York 1983 | MR | Zbl
[11] Kôpka F.: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531 | MR | Zbl
[12] Mosná K.: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electrical Engrg. (Special Issue) 58 (2007), 3–6
[13] Pulmannová S., Riečanová Z.: Block finite atomic orthomodular lattices. J. Pure Appl. Algebra 89 (1993), 295–304 | Zbl
[14] Riečanová Z.: Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452 | MR
[15] Riečanová Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. Theoret. Phys. 39 (2000), 231–237 | MR
[16] Riečanová Z.: Proper effect algebras admitting no states. Internat. J. Theoret. Phys. 40 (2001), 1683–1691 | MR | Zbl
[17] Riečanová Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41 (2002), 1511–1524 | MR
[18] Riečanová Z.: Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sets and Systems 136 (2003), 41–54 | MR
[19] Riečanová Z.: Basic decomposition of elements and Jauch–Piron effect algebras. Fuzzy Sets and Systems 155 (2005), 138–149 | MR