Stability of stochastic optimization problems - nonmeasurable case
Kybernetika, Tome 44 (2008) no. 2, pp. 259-276 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with stability of stochastic optimization problems in a general setting. Objective function is defined on a metric space and depends on a probability measure which is unknown, but, estimated from empirical observations. We try to derive stability results without precise knowledge of problem structure and without measurability assumption. Moreover, $\varepsilon $-optimal solutions are considered. The setup is illustrated on consistency of a $\varepsilon $-$M$-estimator in linear regression model.
This paper deals with stability of stochastic optimization problems in a general setting. Objective function is defined on a metric space and depends on a probability measure which is unknown, but, estimated from empirical observations. We try to derive stability results without precise knowledge of problem structure and without measurability assumption. Moreover, $\varepsilon $-optimal solutions are considered. The setup is illustrated on consistency of a $\varepsilon $-$M$-estimator in linear regression model.
Classification : 60B05, 62F10, 62J05, 90C15, 90C31
Keywords: stability of stochastic optimization problem; weak convergence of probability measures; estimator consistency; metric spaces
@article{KYB_2008_44_2_a8,
     author = {Lachout, Petr},
     title = {Stability of stochastic optimization problems - nonmeasurable case},
     journal = {Kybernetika},
     pages = {259--276},
     year = {2008},
     volume = {44},
     number = {2},
     mrnumber = {2428223},
     zbl = {1154.90559},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a8/}
}
TY  - JOUR
AU  - Lachout, Petr
TI  - Stability of stochastic optimization problems - nonmeasurable case
JO  - Kybernetika
PY  - 2008
SP  - 259
EP  - 276
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a8/
LA  - en
ID  - KYB_2008_44_2_a8
ER  - 
%0 Journal Article
%A Lachout, Petr
%T Stability of stochastic optimization problems - nonmeasurable case
%J Kybernetika
%D 2008
%P 259-276
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a8/
%G en
%F KYB_2008_44_2_a8
Lachout, Petr. Stability of stochastic optimization problems - nonmeasurable case. Kybernetika, Tome 44 (2008) no. 2, pp. 259-276. http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a8/

[1] Chen X. R., Wu Y. H.: Strong consistency of $M$-estimates in linear model. J. Multivariate Anal. 27 (1988), 1, 116–130 | MR

[2] Dodge Y., Jurečková J.: Adaptive Regression. Springer-Verlag, New York 2000 | MR | Zbl

[3] Dupačová J.: Stability and sensitivity analysis for stochastic programming. Ann. Oper. Res. 27 (1990), 115–142 | MR

[4] Dupačová J., Wets R. J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic problems. Ann. Statist. 16 (1988), 4, 1517–1549 | MR

[5] Hoffmann-Jørgensen J.: Probability with a View Towards to Statistics I, II. Chapman and Hall, New York 1994

[6] Huber P. J.: Robust Statistics. Wiley, New York 1981 | MR

[7] Jurečková J.: Asymptotic representation of M-estimators of location. Math. Oper. Statist. Sec. Statist. 11 (1980), 1, 61–73 | MR

[8] Jurečková J.: Representation of M-estimators with the second-order asymptotic distribution. Statist. Decision 3 (1985), 263–276 | MR | Zbl

[9] Jurečková J., Sen P. K.: Robust Statistical Procedures. Wiley, New York 1996 | MR | Zbl

[10] King A. J., Rockafellar T.: Asymptotic theory for solutions in statistical estimation and stochastic programming. Math. Oper. Res. 18 (1993), 148–162 | MR | Zbl

[11] Kelley J. L.: General Topology. D. van Nostrand, New York 1955 | MR | Zbl

[12] Knight K.: Limiting distributions for $L_{1}$-regression estimators under general conditions. Ann. Statist. 26 (1998), 2, 755–770 | MR | Zbl

[13] Lachout P.: Stochastic optimization sensitivity without measurability. In: Proc. 15th Internat. Conference on Mathematical Methods in Economics and Industry (K. Cechlárová, M. Halická, V. Borbełová, V. Lacko, eds.), Herłany, Slovakia, June 2007, pp. 131–136

[14] Lachout P., Liebscher E., Vogel S.: Strong convergence of estimators as $\varepsilon _n$-minimizers of optimization problems. Ann. Inst. Statist. Math. 57 (2005), 2, 291–313 | MR

[15] Lachout P., Vogel S.: On continuous convergence and epi-convergence of random functions. Part I: Theory and relations. Kybernetika 39 (2003), 1, 75–98 | MR

[16] Leroy A. M., Rousseeuw P. J.: Robust Regression and Outlier Detection. Wiley, New York 1987 | MR | Zbl

[17] Robinson S. M.: Analysis of sample-path optimization. Math. Oper. Res. 21 (1996), 3, 513–528 | MR | Zbl

[18] Rockafellar T., Wets R. J.-B.: Variational Analysis. Springer-Verlag, Berlin 1998 | MR | Zbl

[19] Schultz R.: Some aspects of stability in stochastic programming. Ann. Oper. Research 100 (1996), 55–84 | MR

[20] Vaart A. W. van der, Wellner J. A.: Weak Convergence and Empirical Processes. Springer, New York 1996 | MR

[21] Wang L., Wang J.: Limit distribution of statistical estimators for stochastic programs with dependent samples. Z. Angew. Math. Mech. 79 (1999), 4, 257–266 | MR | Zbl

[22] Vajda I., Janžura M.: On asymptotically optimal estimates for general observations. Stochastic Proc. Appl. 72 (1997), 1, 27–45 | MR | Zbl

[23] Ruszczyński A., (eds.) A. Shapiro: Stochastic Programming. Elsevier, Amsterdam 2003 | MR | Zbl