Keywords: two-stage stochastic programs; polyhedral risk objectives; robustness; contamination; bond portfolio management problem
@article{KYB_2008_44_2_a6,
author = {Dupa\v{c}ov\'a, Jitka},
title = {Risk objectives in two-stage stochastic programming models},
journal = {Kybernetika},
pages = {227--242},
year = {2008},
volume = {44},
number = {2},
mrnumber = {2428221},
zbl = {1154.91500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a6/}
}
Dupačová, Jitka. Risk objectives in two-stage stochastic programming models. Kybernetika, Tome 44 (2008) no. 2, pp. 227-242. http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a6/
[1] Acerbi C.: Spectral measures of risk: A coherent representation of subjective risk aversion. J. Bank. Finance 26 (2002), 1505–1518
[2] Ahmed S.: Convexity and decomposition of mean-risk stochastic programs. Math. Programming A 106 (2006), 447–452 | MR | Zbl
[3] Artzner P., Delbaen F., Eber, J., Heath D.: Coherent measures of risk. Math. Finance 9 (1999), 203–228. See also , pp. 145–175 | MR | Zbl
[4] Bertocchi M., Dupačová, J., Moriggia V.: Sensitivity analysis of a bond portfolio model for the Italian market. Control Cybernet. 29 (2000), 595–615 | Zbl
[5] Bertocchi M., Moriggia, V., Dupačová J.: Horizon and stages in applications of stochastic programming in finance. Ann. Oper. Res. 142 (2006), 63–78 | MR | Zbl
[6] Dempster M. A. H., ed.: Risk Management: Value at Risk and Beyond. Cambridge Univ. Press, Cambridge 2002 | MR | Zbl
[7] Dupačová J.: Stability in stochastic programming with recourse – contaminated distributions. Math. Programing Stud. 27 (1986), 133–144 | MR | Zbl
[8] Dupačová J.: Stability and sensitivity analysis in stochastic programming. Ann. Oper. Res. 27 (1990), 115–142 | MR
[9] Dupačová J.: Postoptimality for multistage stochastic linear programs. Ann. Oper. Res. 56 (1995), 65–78 | MR | Zbl
[10] Dupačová J.: Scenario based stochastic programs: Resistance with respect to sample. Ann. Oper. Res. 64 (1996), 21–38 | MR | Zbl
[11] Dupačová J.: Reflections on robust optimization. In: Stochastic Programming Methods and Technical Applications (K. Marti and P. Kall, eds.), LNEMS 437, Springer, Berlin 1998, pp. 111–127 | MR | Zbl
[12] Dupačová J.: Stress testing via contamination. In: Coping with Uncertainty. Modeling and Policy Issues (K. Marti et al., eds.), LNEMS 581, Springer, Berlin 2006, pp. 29–46 | MR | Zbl
[13] Dupačová J.: Contamination for multistage stochastic programs. In: Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), Matfyzpress, Praha 2006, pp. 91–101. See also SPEPS 2006-06
[14] Dupačová J., Bertocchi, M., Moriggia V.: Testing the structure of multistage stochastic programs. Submitted to Optimization | Zbl
[15] Dupačová J., Hurt, J., Štěpán J.: Stochastic Modeling in Economics and Finance, Part II. Kluwer Academic Publishers, Dordrecht 2002 | MR
[16] Dupačová J., Polívka J.: Stress testing for VaR and CVaR. Quantitative Finance 7 (2007), 411–421 | MR | Zbl
[17] Eichhorn A., Römisch W.: Polyhedral risk measures in stochastic programming. SIAM J. Optim. 16 (2005), 69–95 | MR | Zbl
[18] Eichhorn A., Römisch W.: Mean-risk optimization models for electricity portfolio management. In: Proc. 9th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS 2006), Stockholm 2006
[19] Eichhorn A., Römisch W.: Stability of multistage stochastic programs incorporating polyhedral risk measures. To appear in Optimization 2008 | MR | Zbl
[20] Föllmer H., Schied A.: Stochastic Finance. An Introduction in Discrete Time. (De Gruyter Studies in Mathematics 27). Walter de Gruyter, Berlin 2002 | MR | Zbl
[21] Kall P., Mayer J.: Stochastic Linear Programming. Models, Theory and Computation. Springer-Verlag, Berlin 2005 | MR | Zbl
[22] Mulvey J. M., Vanderbei R. J., Zenios S. A.: Robust optimization of large scale systems. Oper. Res. 43 (1995), 264–281 | MR | Zbl
[23] Ogryczak W., Ruszczyński A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13 (2002), 60–78 | MR | Zbl
[24] Pflug G. Ch.: Some remarks on the Value-at-Risk and the Conditional Value-at-Risk. In: Probabilistic Constrained Optimization, Methodology and Applications (S. Uryasev, ed.), Kluwer Academic Publishers, Dordrecht 2001, pp. 272–281 | MR | Zbl
[25] Pflug G. Ch., Römisch W.: Modeling, Measuring and Managing Risk. World Scientific, Singapur 2007 | MR | Zbl
[26] Rockafellar R. T., Uryasev S. : Conditional value-at-risk for general loss distributions. J. Bank. Finance 26 (2001), 1443–1471
[27] Rockafellar R. T., Uryasev, S., Zabarankin M.: Generalized deviations in risk analysis. Finance Stochast. 10 (2006), 51–74 | MR | Zbl
[28] Römisch W.: Stability of stochastic programming problems. Chapter 8 in , pp. 483–554 | MR
[29] Römisch W., Wets R. J-B.: Stability of $\varepsilon $-approximate solutions to convex stochastic programs. SIAM J. Optim. 18 (2007), 961–979 | MR | Zbl
[30] Ruszczyński A., Shapiro A., eds.: Handbook on Stochastic Programming. Handbooks in Operations Research & Management Science 10, Elsevier, Amsterdam 2002
[31] Ruszczyński A., Shapiro A.: Optimization of risk measures. Chapter 4 in: Probabilistic and Randomized Methods for Design under Uncertainty (G. Calafiore and F. Dabbene, eds.), Springer, London 2006, pp. 121–157 | Zbl