Keywords: risk-sensitive Markov decision chains; average optimal policies; optimal growth rates
@article{KYB_2008_44_2_a5,
author = {Sladk\'y, Karel},
title = {Growth rates and average optimality in risk-sensitive {Markov} decision chains},
journal = {Kybernetika},
pages = {205--226},
year = {2008},
volume = {44},
number = {2},
mrnumber = {2428220},
zbl = {1154.90612},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a5/}
}
Sladký, Karel. Growth rates and average optimality in risk-sensitive Markov decision chains. Kybernetika, Tome 44 (2008) no. 2, pp. 205-226. http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a5/
[1] Bellman R.: On a quasi-linear equation. Canadian J. Math. 8 (1956), 198–202 | MR | Zbl
[2] Bellman R.: Dynamic Programming. Princenton Univ. Press, Princenton, N.J. 1957 | MR | Zbl
[3] Berman A., Plemmons R. J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York 1979 | MR | Zbl
[4] Bielecki T. D., Hernández-Hernández, D., Pliska S. R.: Risk-sensitive control of finite state Markov chains in discrete time, with application to portfolio management. Math. Methods Oper. Res. 50 (1999), 167–188 | MR
[5] Cavazos-Cadena R.: Solution to the risk-sensitive average cost optimality equation in a class of Markov decision processes with finite state space. Math. Methods Oper. Res. 57 (2003), 253–285 | MR | Zbl
[6] Cavazos-Cadena R., Montes-de-Oca R.: The value iteration algorithm in risk-sensitive average Markov decision chains with finite state space. Math. Oper. Res. 28 (2003), 752–756 | MR | Zbl
[7] Cavazos-Cadena R., Montes-de-Oca R.: Nonstationary value iteration in controlled Markov chains with risk-sensitive average criterion. J. Appl. Probab. 42 (2005), 905–918 | MR | Zbl
[8] Cavazos-Cadena R., Hernández-Hernández D.: Solution fo the risk-sensitive average optimality equation in communicating Markov decision chains with finite state space: An alternative approach. Math. Methods Oper. Res. 56 (2002), 473–479 | MR
[9] Cavazos-Cadena R., Hernández-Hernández D.: A characterization exponential functionals in finite Markov chains. Math. Methods Oper. Res. 60 (2004), 399–414 | MR
[10] Cavazos-Cadena R., Hernández-Hernández D.: A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains. Ann. Appl. Probab. 15 (2005), 175–212 | MR | Zbl
[11] Gantmakher F. R.: The Theory of Matrices. Chelsea, London 1959
[12] Howard R. A., Matheson J.: Risk-sensitive Markov decision processes. Manag. Sci. 23 (1972), 356–369 | MR | Zbl
[13] Jaquette S. A.: A utility criterion for Markov decision processes. Manag. Sci. 23 (1976), 43–49 | MR | Zbl
[14] Mandl P.: Decomposable non-negative matrices in a dynamic programming problem. Czechoslovak Math. J. 20 (1970), 504–510 | MR | Zbl
[15] Rothblum U. G., Whittle P.: Growth optimality for branching Markov decision chains. Math. Oper. Res. 7 (1982), 582–601 | MR | Zbl
[16] Sladký K.: On dynamic programming recursions for multiplicative Markov decision chains. Math. Programming Study 6 (1976), 216–226 | MR | Zbl
[17] Sladký K.: Successive approximation methods for dynamic programming models. In: Proc. of the Third Formator Symposium on the Analysis of Large-Scale Systems (J. Beneš and L. Bakule, eds.). Academia, Prague 1979, pp. 171–189 | Zbl
[18] Sladký K.: Bounds on discrete dynamic programming recursions I. Kybernetika 16 (1980), 526–547 | MR | Zbl
[19] Whittle P.: Optimization Over Time – Dynamic Programming and Stochastic Control. Volume II, Chapter 35, Wiley, Chichester 1983 | MR
[20] Zijm W. H. M.: Nonnegative Matrices in Dynamic Programming. Mathematical Centre Tract, Amsterdam 1983 | MR | Zbl