Keywords: stochastic programming; discretization; integration quadratures; simulation
@article{KYB_2008_44_2_a4,
author = {Hilli, Petri and Pennanen, Teemu},
title = {Numerical study of discretizations of multistage stochastic programs},
journal = {Kybernetika},
pages = {185--204},
year = {2008},
volume = {44},
number = {2},
mrnumber = {2428219},
zbl = {1154.90556},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a4/}
}
Hilli, Petri; Pennanen, Teemu. Numerical study of discretizations of multistage stochastic programs. Kybernetika, Tome 44 (2008) no. 2, pp. 185-204. http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a4/
[1] Blomvall J., Shapiro A.: Solving multistage asset investment problems by the sample average approximation method. Math. Program. 108 (2006), 571–595 | MR | Zbl
[2] Chiralaksanakul A.: Monte Carlo Methods for Multi-stage Stochastic Programs. PhD. Thesis, University of Texas at Austin, 2003
[3] Chiralaksanakul A., Morton D.: Assessing policy quality in multi-stage stochastic programming. Stochastic Programming E-Print Series, 2004
[4] Fourer R., Gay D. M., Kernighan B.W.: AMPL: A Modeling Language for Mathematical Programming. Second edition. Thomson, Canada 2002
[5] Frauendorfer K.: Barycentric scenario trees in convex multistage stochastic programming. Math. Programming 75 (1996), 277–293 | MR | Zbl
[6] Glasserman P.: Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York 2004 | MR | Zbl
[7] Heitsch H., Römisch W.: Scenario tree modelling for multistage stochastic programs. Math. Programming. To appear | MR
[8] Hilli P., Koivu M., Pennanen, T., Ranne A.: A stochastic programming model for asset liability management of a Finnish pension company. Ann. Oper. Res. 152 (2007), 115–139 | MR | Zbl
[9] Kall P., Mayer J.: Stochastic Linear Programming. Springer-Verlag, New York 2005 | MR | Zbl
[10] Kuhn D.: Generalized Bounds for Convex Multistage Stochastic Programs. Springer-Verlag, Berlin 2005 | MR | Zbl
[11] Niederreiter H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia 1992 | MR | Zbl
[12] Niederreiter H., Talay D.: Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer-Verlag, Berlin 2006 | MR | Zbl
[13] Olsen P.: Discretizations of multistage stochastic programming problems. Math. Programming Stud. 6 (1976), 111–124 | MR | Zbl
[14] Pennanen T.: Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30 (2005), 245–256 | MR | Zbl
[15] Pennanen T.: Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Math. Programming, Series B. To appear | MR | Zbl
[16] Pennanen T., Koivu M.: Integration quadratures in discretization of stochastic programs. SPEPS E-Print Series, 2002
[17] Pflug G.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Programming 89 (2001), 251–271 | MR
[18] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.: Numerical Recipes in C. Cambridge University Press, Cambridge 1992 | MR | Zbl
[19] Rockafellar R. T., Wets R. J.-B.: Continuous versus measurable recourse in $N$-stage stochastic programming. J. Math. Anal. Appl. 48 (1974), 836–859 | MR | Zbl
[20] Rockafellar R. T., Wets R. J.-B.: Nonanticipativity and $L^1$-martingales in stochastic optimization problems. Math. Programming Stud. (1976), 170–187 | MR
[21] Shapiro A.: Inference of statistical bounds for multistage stochastic programming problems. Math. Methods Oper. Res. 58 (2003), 57–68 | MR | Zbl
[22] Shapiro A.: On complexity of multistage stochastic programs. Oper. Res. Lett. 34 (2006), 1–8 | MR | Zbl
[23] Sloan I. H., Joe S.: Lattice Methods for Multiple Integration. The Clarendon Press Oxford University Press, New York 1994 | MR | Zbl
[24] Sobol’ I. M.: The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Computational Math. And Math. Phys. (1967), 86–112 | MR | Zbl