Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming
Kybernetika, Tome 44 (2008) no. 2, pp. 171-184 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We propose two methods to solve multistage stochastic programs when only a (large) finite set of scenarios is available. The usual scenario tree construction to represent non-anticipativity constraints is replaced by alternative discretization schemes coming from non-parametric estimation ideas. In the first method, a penalty term is added to the objective so as to enforce the closeness between decision variables and the Nadaraya–Watson estimation of their conditional expectation. A numerical application of this approach on an hydro-power plant management problem is developed. The second method exploits the interpretation of kernel estimators as a sum of basis functions.
We propose two methods to solve multistage stochastic programs when only a (large) finite set of scenarios is available. The usual scenario tree construction to represent non-anticipativity constraints is replaced by alternative discretization schemes coming from non-parametric estimation ideas. In the first method, a penalty term is added to the objective so as to enforce the closeness between decision variables and the Nadaraya–Watson estimation of their conditional expectation. A numerical application of this approach on an hydro-power plant management problem is developed. The second method exploits the interpretation of kernel estimators as a sum of basis functions.
Classification : 49M25, 60F25, 62G07, 90C15, 90C59, 90C90
Keywords: multistage stochastic programming; scenarios; discrete approximation
@article{KYB_2008_44_2_a3,
     author = {Roy, Jean-S\'ebastien and Lenoir, Arnaud},
     title = {Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming},
     journal = {Kybernetika},
     pages = {171--184},
     year = {2008},
     volume = {44},
     number = {2},
     mrnumber = {2428218},
     zbl = {1154.90560},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a3/}
}
TY  - JOUR
AU  - Roy, Jean-Sébastien
AU  - Lenoir, Arnaud
TI  - Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming
JO  - Kybernetika
PY  - 2008
SP  - 171
EP  - 184
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a3/
LA  - en
ID  - KYB_2008_44_2_a3
ER  - 
%0 Journal Article
%A Roy, Jean-Sébastien
%A Lenoir, Arnaud
%T Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming
%J Kybernetika
%D 2008
%P 171-184
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a3/
%G en
%F KYB_2008_44_2_a3
Roy, Jean-Sébastien; Lenoir, Arnaud. Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming. Kybernetika, Tome 44 (2008) no. 2, pp. 171-184. http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a3/

[1] Babuska I., Melenk J.: The partition of unity method. International Journal for Numerical Methods in Engineering 40 (1998), 727–758 | MR

[2] Barty K.: Contributions à la discrétisation des contraintes de mesurabilité pour les problčmes d’optimisation stochastiques. PhD. Thesis, Ecole nationale des ponts et chaussées, 2004

[3] Cohen G.: Optimal scenario tree topology and corresponding rate of convergence. In: Proc. 11th Conference on Stochastic Programming, 2007

[4] Dallagi A.: Méthodes particulaires en commande optimale stochastique. PhD. Thesis, Université Paris I, 2007

[5] Devroye L. P.: On the almost everywhere convergence of nonparametric regression function estimates. Ann. Statist. 9 (1981), 1310–1319 | MR | Zbl

[6] Devroye L. P., Wagner T.: Distribution-free consistency results in nonparametric discrimination and regression function estimation. Ann. Statist. 8 (1980), 231–239 | MR | Zbl

[7] Gröwe-Kuska N., Heitsch, H., Römisch W.: Scenario reduction and scenario tree construction for power management problem. In: Power Tech Conference Proceedings, IEEE Bologna, 2003

[8] Heitsch H., Römisch W.: Generation of multivariate scenario trees to model stochasticity in power management. IEEE St. Petersburg Power Tech 2005, 2005

[9] Heitsch H., Römisch W.: Scenario Tree Modeling for Multistage Stochastic Programs. Preprint Humboldt-University Berlin, Institute of Mathematics, 2005 | MR | Zbl

[10] Nadaraya E.: On estimating regression. Theory Probab. Appl. 9 (1964), 141–142 | Zbl

[11] Pennanen T.: Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30 (2005), 245–256 | MR | Zbl

[12] Spiegelman C., Sacks J.: Consistent window estimation in nonparametric regression. Ann. Statist. 8 (1980), 240–246 | MR | Zbl

[13] Watson G.: Smooth regression analysis. Sankhya Ser. A 26 (1964), 359–372 | MR | Zbl