Keywords: stochastic programming; bounds; decision rules; expected value constraints; portfolio optimization
@article{KYB_2008_44_2_a1,
author = {Kuhn, Daniel and Parpas, Panos and Rustem, Ber\c{c}},
title = {Bound-based decision rules in multistage stochastic programming},
journal = {Kybernetika},
pages = {134--150},
year = {2008},
volume = {44},
number = {2},
mrnumber = {2428216},
zbl = {1154.90558},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a1/}
}
Kuhn, Daniel; Parpas, Panos; Rustem, Berç. Bound-based decision rules in multistage stochastic programming. Kybernetika, Tome 44 (2008) no. 2, pp. 134-150. http://geodesic.mathdoc.fr/item/KYB_2008_44_2_a1/
[1] Ash R.: Real Analysis and Probability. Probability and Mathematical Statistics. Academic Press, Berlin 1972 | MR
[2] Birge J., Louveaux F.: Introduction to Stochastic Programming. Springer-Verlag, New York 1997 | MR | Zbl
[3] Birge J., Wets R.-B.: Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Programming Stud. 27 (1986), 54–102 | MR | Zbl
[4] Dokov S. P., Morton D. P.: Second-order lower bounds on the expectation of a convex function. Math. Oper. Res. 30 (2005), 3, 662–677 | MR | Zbl
[5] Dupačová J.: Stochastic programming: Minimax approach. In: Encyclopedia of Optimization (C. Floudas and P. Pardalos, eds.), vol. 5, Kluwer 2001, pp. 327–330
[6] Žáčková) J. Dupačová (as: On minimax solutions of stochastic linear programming problems. Časopis pro pěstování matematiky 91 (1966), 423–429 | MR
[7] Edirisinghe N., Ziemba W.: Bounding the expectation of a saddle function with application to stochastic programming. Math. Oper. Res. 19 (1994), 314–340 | MR | Zbl
[8] Fleten S.-E., Høyland, K., Wallace S. W.: The performance of stochastic dynamic and fixed mix portfolio models. European J. Oper. Res. 140 (2002), 1, 37–49 | MR
[9] Frauendorfer K.: Multistage stochastic programming: Error analysis for the convex case. Z. Oper. Res. 39 (1994), 1, 93–122 | MR | Zbl
[10] Frauendorfer K.: Barycentric scenario trees in convex multistage stochastic programming. Math. Programming 75 (1996), 2, 277–294 | MR | Zbl
[11] Garstka S. J., Wets R. J.-B.: On decision rules in stochastic programming. Math. Programming 7 (1974), 117–143 | MR | Zbl
[12] Haneveld W. K., Vlerk M. van der: Integrated chance constraints: Reduced forms and an algorithm. Comput. Manag. Sci. 3 (2006), 2, 245–269 | MR
[13] Heitsch H., Römisch, W., Strugarek C.: Stability of multistage stochastic programs. SIAM J. Optim. 17 (2006), 511–525 | MR | Zbl
[14] Hochreiter R., Pflug, G.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. Oper. Res. 156 (2007), 1, 257–272 | MR | Zbl
[15] Høyland K., Wallace S.: Generating scenario trees for multistage decision problems. Management Sci. 47 (2001), 2, 295–307
[16] Infanger G.: Planning under Uncertainty: Solving Large-Scale Stochastic Linear Programs. Boyd and Fraser, Danvers 1994 | Zbl
[17] Kaňková V., Šmíd M.: On approximation in multistage stochastic programs: Markov dependence. Kybernetika 40 (2004), 5, 625–638 | MR
[18] Kleywegt A. J., Shapiro, A., Homem-de-Mello T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12 (2002), 2, 479–502 | MR | Zbl
[19] Koivu M.: Variance reduction in sample approximations of stochastic programs. Math. Programming, Ser. A 103 (2005), 3, 463–485 | MR | Zbl
[20] Kouwenberg R.: Scenario generation and stochastic programming models for asset and liability management. European J. Oper. Res. 134 (2001), 2, 279–292 | MR
[21] Kuhn D.: Aggregation and discretization in multistage stochastic programming. Math. Programming, Ser. A 113 (2008), 1, 61–94 | MR | Zbl
[22] Kuhn D.: Convergent bounds for stochastic programs with expected value constraints. The Stochastic Programming E-Print Series (SPEPS), 2007 | Zbl
[23] Kuhn D., Parpas, P., Rustem B.: Threshold accepting approach to improve bound-based approximations for portfolio optimization. In: Computational Methods in Financial Engineering (E. Kontoghiorghes, B. Rustem, and P. Winker, eds.), Springer–Verlag, Berlin 2008, pp. 3–26 | Zbl
[24] Mirkov R., Pflug G.: Tree approximations of dynamic stochastic programs. SIAM J. Optim. 18 (2007), 3, 1082–1105 | MR | Zbl
[25] Pennanen T.: Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Math. Programming, to appear | MR | Zbl
[26] Pflug G.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Programming, Ser. B 89 (2001), 251–271 | MR
[27] Rachev S., Römisch W.: Quantitative stability in stochastic programming: the method of probability metrics. Math. Oper. Res. 27 (2002), 792–818 | MR | Zbl
[28] Rockafellar R. T., Uryasev S.: Optimization of conditional value-at-risk. J. Risk 2 (2000) 3, 21–41
[29] Shapiro A., Nemirovski A.: On complexity of stochastic programming problems. In: Continuous Optimization: Current Trends and Applications 2005 (V. Jeyakumar and A. Rubinov, eds.), Springer-Verlag, Berlin 2006, pp. 111–144 | MR | Zbl
[30] Thénié J., Vial J.-P.: Step decision rules for multistage stochastic programming: a heuristic approach. Optimization Online, 2006
[31] Wright S.: Primal-dual aggregation and disaggregation for stochastic linear programs. Math. Oper. Res. 19 (1994), 4, 893–908 | MR | Zbl