Keywords: separating hyperplane; parameters; convex polyhedra; solution set; stability set
@article{KYB_2008_44_1_a8,
author = {Hlad{\'\i}k, Milan},
title = {Separation of convex polyhedral sets with column parameters},
journal = {Kybernetika},
pages = {113--130},
year = {2008},
volume = {44},
number = {1},
mrnumber = {2405059},
zbl = {1142.90034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a8/}
}
Hladík, Milan. Separation of convex polyhedral sets with column parameters. Kybernetika, Tome 44 (2008) no. 1, pp. 113-130. http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a8/
[1] Gal T.: Postoptimal Analyses, Parametric Programming, and Related Topics. McGraw-Hill, New York 1979 | MR | Zbl
[2] Gal T., Greenberg H. J., eds.: Advances in Sensitivity Analysis and Parametric Programming. Kluwer Academic Publishers, Boston 1997 | MR | Zbl
[3] Grünbaum B.: Convex Polytopes. Springer, New York 2003 | MR | Zbl
[4] Grygarová L.: A calculation of all separating hyperplanes of two convex polytopes. Optimization 41 (1997), 57–69 | MR
[5] Grygarová L.: On a calculation of an arbitrary separating hyperplane of convex polyhedral sets. Optimization 43 (1998), 93–112 | MR | Zbl
[6] Hladík M.: Explicit description of all separating hyperplanes of two convex polyhedral sets with RHS-parameters. In: Proc. WDS’04, Part I (J. Šafránková, ed.), Matfyzpress, Praha 2004, pp. 63–70
[7] Kemp M. C., Kimura Y.: Introduction to Mathematical Economics. Springer, New York 1978 | MR | Zbl
[8] Klee V.: Separation and support properties of convex sets – a survey. In: Control Theory and the Calculus of Variations (A. V. Balakrishnan, ed.), Academic Press, New York 1969, pp. 235–303 | MR
[9] Nožička F., Guddat J., Hollatz, H., Bank B.: Theorie der linearen parametrischen Optimierung. Akademie-Verlag, Berlin 1974 | Zbl
[10] Nožička F., Grygarová, L., Lommatzsch K.: Geometrie konvexer Mengen und konvexe Analysis. Akademie-Verlag, Berlin 1988 | MR
[11] Schrijver A.: Theory of Linear and Integer Programming. Wiley, Chichester 1998 | MR | Zbl