Keywords: divergences; metric divergences; families of $f$-divergences
@article{KYB_2008_44_1_a7,
author = {K\r{u}s, V\'aclav and Morales, Domingo and Vajda, Igor},
title = {Extensions of the parametric families of divergences used in statistical inference},
journal = {Kybernetika},
pages = {95--112},
year = {2008},
volume = {44},
number = {1},
mrnumber = {2405058},
zbl = {1142.62002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a7/}
}
TY - JOUR AU - Kůs, Václav AU - Morales, Domingo AU - Vajda, Igor TI - Extensions of the parametric families of divergences used in statistical inference JO - Kybernetika PY - 2008 SP - 95 EP - 112 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a7/ LA - en ID - KYB_2008_44_1_a7 ER -
Kůs, Václav; Morales, Domingo; Vajda, Igor. Extensions of the parametric families of divergences used in statistical inference. Kybernetika, Tome 44 (2008) no. 1, pp. 95-112. http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a7/
[1] Beirlant J., Devroye L., Győrfi, L., Vajda I.: Large deviations of divergence measures of partitions. J. Statist. Plann. Inference 93 (2001), 1–16 | MR
[2] Csiszár I., Fisher J.: Informationsentfernungen im Raum der Narcheinlichkeitsverteilungen. Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962), 159–180 | MR
[3] Győrfi L., Vajda I.: Asymptotic distributions for goodness-of-fit statistics in a sequence of multinomial models. Statist. Probab. Lett. 56 (2002), 57–67 | MR
[4] Hobza T., Molina, I., Vajda I.: On convergence of Fisher’s information in continuous models with quantized observations. Test 4 (2005), 151–179
[5] Kafka P., Österreicher, F., Vincze I.: On powers of Csiszár $f$-divergences defining a distance. Stud. Sci. Math. Hungar. 26 (1991), 415–422 | MR
[6] Kullback S., Leibler R.: On information and sufficiency. Ann. Math. Statist. 22 (1951), 79–86 | MR | Zbl
[7] Kullback S.: Statistics and Information Theory. Wiley, New York 1957
[8] Kůs V.: Blended $\phi $-divergences with examples. Kybernetika 39 (2003), 43–54 | MR
[9] Cam L. Le: Asymptotic Methods in Statistical Decision Theory. Springer, New York 1986 | MR | Zbl
[10] Liese F., Vajda I.: Convex Statistical Distances. Teubner, Leipzig 1987 | MR | Zbl
[11] Liese F., Vajda I.: On divergences and informations in statistics and information theory. IEEE Trans. Inform. Theory 52 (2006), 4394–4412 | MR
[12] Lindsay B. G.: Efficiency versus robustness: The case of minimum Hellinger distance and other methods. Ann. Statist. 22 (1994), 1081–1114 | MR
[13] Morales D., Pardo, L., Vajda I.: Some new statistics for testing hypotheses in parametric models. J. Multivariate Anal. 62 (1997), 137–168 | MR | Zbl
[14] Morales D., Pardo, L., Vajda I.: Limit laws for disparities of spacings. Nonparametric Statistics 15 (2003), 325–342 | MR | Zbl
[15] Morales D., Pardo, L., Vajda I.: On the optimal number of classes in the Pearson goodness-of-fit tests. Kybernetika 41 (2005), 677–698 | MR
[16] Österreicher F.: On a class of perimeter-type distances of probability distributions. Kybernetika 32 (1996), 389–393 | MR | Zbl
[17] Österreicher F., Vajda I.: A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Statist. Math. 55 (2003), 639–653 | MR | Zbl
[18] Pardo L.: Statistical Inference Based on Divergence Measures. Chapman&Hall, London 2006 | MR | Zbl
[19] Read T. C. R., Cressie N. A.: Goodness-of-fit Statistics for Discrete Multivariate Data. Springer, Berlin 1988 | MR | Zbl
[20] Vajda I.: $\chi ^{a}$-divergence and generalized Fisher information. In: Trans. 6th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Academia, Prague 1973, pp. 872–886 | MR | Zbl
[21] Vajda I.: Theory of Statistical Inference and Information. Kluwer, Boston 1989 | Zbl
[22] Vajda I., Kůs V.: Relations Between Divergences, Total Variations and Euclidean Distances. Research Report No. 1853, Institute of Information Theory, Prague 1995
[23] Vajda I., Meulen E. C. van der: Optimization of Barron density stimates. IEEE Trans. Inform. Theory 47 (2001), 1867–1883 | MR