On entropies for random partitions of the unit segment
Kybernetika, Tome 44 (2008) no. 1, pp. 75-94 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove the complete convergence of Shannon’s, paired, genetic and α-entropy for random partitions of the unit segment. We also derive exact expressions for expectations and variances of the above entropies using special functions.
We prove the complete convergence of Shannon’s, paired, genetic and α-entropy for random partitions of the unit segment. We also derive exact expressions for expectations and variances of the above entropies using special functions.
Classification : 60F15, 62G30, 94A17
Keywords: genetic entropy; α-entropy; random partitions; complete convergence
@article{KYB_2008_44_1_a6,
     author = {Bieniek, Milena and Szynal, Dominik},
     title = {On entropies for random partitions of the unit segment},
     journal = {Kybernetika},
     pages = {75--94},
     year = {2008},
     volume = {44},
     number = {1},
     mrnumber = {2405057},
     zbl = {1149.94003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a6/}
}
TY  - JOUR
AU  - Bieniek, Milena
AU  - Szynal, Dominik
TI  - On entropies for random partitions of the unit segment
JO  - Kybernetika
PY  - 2008
SP  - 75
EP  - 94
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a6/
LA  - en
ID  - KYB_2008_44_1_a6
ER  - 
%0 Journal Article
%A Bieniek, Milena
%A Szynal, Dominik
%T On entropies for random partitions of the unit segment
%J Kybernetika
%D 2008
%P 75-94
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a6/
%G en
%F KYB_2008_44_1_a6
Bieniek, Milena; Szynal, Dominik. On entropies for random partitions of the unit segment. Kybernetika, Tome 44 (2008) no. 1, pp. 75-94. http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a6/

[1] Baum L. E., Katz M.: Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 (1968), 108–123 | MR

[2] Bieniek M., Szynal D.: A contribution to results on random partitions of the segment. Internat. J. Pure and Appl. Math. 13 (2004), 3, 337–378 | MR | Zbl

[3] Burbea N., Rao N.: Entropy differential metrics and divergence measures in probability spaces: a unified approach. J. Multivariate Anal. 12 (1982), 575–596 | MR

[4] Darling D. A.: On a class of problems related to the random division of an interval. Ann. Math. Statist. 24 (1953), 239–253 | MR | Zbl

[5] Erdős P.: On a theorem of Hsu and Robbins. Ann. Math. Statist. 20 (1949), 286–291 | MR

[6] Feller W.: An Introduction to Probability Theory and its Applications. Vol. II. Wiley, New York 1966 | MR | Zbl

[7] Goldstein S.: On entropy of random partitions of the segment $[0,1]$. Bull. Soc. Sci. Lett. Łódź XXIV 4 (1974), 1–7 | MR

[8] Gradstein I. S., Ryzyk I. M.: Tables of Integrals, Sums, Series and Products. Fourth edition. Academic Press, New York – London 1965

[9] Graham R. L., Knuth D. E., Patashnik O.: Concrete Mathematics. Addison–Wesley Publishing Company Advanced Book Program, Reading, MA 1989 | MR | Zbl

[10] Ekstörm M.: Sum-functions of spacings of increasing order. J. Statist. Plann. Inference 136 (2006), 2535–2546 | MR

[11] Hall P.: Limit theorems for sums of general functions of $m$-spacings. Math. Proc. Cambridge Philos. Soc. 96 (1984), 517–532 | MR | Zbl

[12] Hall P.: On power distributional tests based on sample spacings. J. Multivariate Anal. 19 (1986), 201–224 | MR

[13] Hansen E. R.: A Table of Series and Products. Prentice-Hall, Englewood Clifts, N. J. 1975 | Zbl

[14] Havrda J., Charvát F.: Quantification method in classification process: Concept of structural $\alpha $-entropy. Kybernetika 3 (1967), 30–35 | MR

[15] Heyde C. C.: A suplement to the strong law of large numbers. J. Appl. Probab. 12 (1975), 173–175 | MR

[16] Hsu P. L., Robbins H.: Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25–31 | MR | Zbl

[17] Latter B. D. H.: Measures of genetic distance between indviduals and populations. Publ. Univ. Hawai, Honolulu, Genetic Structure of Populations (1973), 27–39

[18] Menendez M. L., Morales D., Pardo, L., Salicrú M.: Asymptotic distribution of $\lbrace h,\phi \rbrace $-entropies. Comm. Statist. – Theory Methods 22 (1993), 7, 2015–2031 | MR

[19] Misra N.: A new test if uniformity based on overlapping sample spacings. Comm. Statist. – Theory Methods 30 (2001), 7, 1435–1470 | MR

[20] Renyi A.: New nonadditive measures of entropy for discrete probability distributions. In: Proc. 4th Berkeley Symp. Math. Statist. and Prob. Vol. 1, 1961, pp. 547–561 | MR

[21] Shannon C. E.: A mathematical theory of communications. Bell System Tech. J. 27 (1948), 379–425, 623–656 | MR

[22] Shao Y., Jimenez R.: Entropy for random partitons and its applications. J. Theoret. Probab. 11 (1998), 417–433 | MR

[23] Slud E.: Entropy and maximal spacings for random partitions. Z. Warsch. verw. Gebiete 41 (1978), 341–352 | MR | Zbl

[24] Temme N. M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York 1996 | MR | Zbl

[25] Srivastava H. M., Tu S.-T., Wu T.-C.: Some combinatorial series identities associated with the Digamma function and harmonic numbers. Appl. Math. Lett. 13 (2000), 101–106 | MR | Zbl