Keywords: stochastic systems; state estimation; nonlinear filters; Fokker –Planck equation; numerical solutions; finite volume method; finite difference method
@article{KYB_2008_44_1_a5,
author = {\v{S}v\'acha, Jaroslav and \v{S}imandl, Miroslav},
title = {Nonlinear state prediction by separation approach for continuous-discrete stochastic systems},
journal = {Kybernetika},
pages = {61--74},
year = {2008},
volume = {44},
number = {1},
mrnumber = {2405056},
zbl = {1145.93047},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a5/}
}
TY - JOUR AU - Švácha, Jaroslav AU - Šimandl, Miroslav TI - Nonlinear state prediction by separation approach for continuous-discrete stochastic systems JO - Kybernetika PY - 2008 SP - 61 EP - 74 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a5/ LA - en ID - KYB_2008_44_1_a5 ER -
Švácha, Jaroslav; Šimandl, Miroslav. Nonlinear state prediction by separation approach for continuous-discrete stochastic systems. Kybernetika, Tome 44 (2008) no. 1, pp. 61-74. http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a5/
[1] Daum F. E.: New exact nonlinear filters. In: Bayesian Analysis of Time Series and Dynamic Models (J. C. Spall, ed.), Marcel Dekker, New York 1988, pp. 199–226
[2] Higham D. J., Kloeden P. E.: Maple and Matlab for Stochastic Differential Equations in Finance. Technical Report. University of Strathclyde 2001
[3] Chang J. S., Cooper G.: A practical difference scheme for Fokker–Planck equations. J. Comput. Phys. 6 (1970), 1–16 | Zbl
[4] Moral P. del, Jacod J.: Interacting particle filtering with discrete observations. In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. de Freitas, and N. Gordon, eds.), Springer-Verlag, New York 2001, pp. 43–75 | MR
[5] Jazwinski A. H.: Stochastic Processes and Filtering Theory. Academic Press, New York 1970 | Zbl
[6] Kalman R. E., Bucy R. S.: New results in linear filtering and prediction theory. J. Basic Engrg. 83 (1961), 95–108 | MR
[7] Kouritzin M. A.: On exact filters for continuous signals with discrete observations. IEEE Trans. Automat. Control 43 (1998), 709–715 | MR | Zbl
[8] Kushner H. J., Budhijara A. S.: A nonlinear filtering algorithm based on an approximation of the conditional distribution. IEEE Trans. Automat. Control 45 (2000), 580–585 | MR
[9] LeVeque R. J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, New York 2002 | MR | Zbl
[10] Lototsky S. V., Rozovskii B. L.: Recursive nonlinear filter for a continuous-discrete time model: Separation of parameters and observations. IEEE Trans. Automat. Control 43 (1998), 1154–1158 | MR | Zbl
[11] Mirkovic D.: $N$-dimensional Finite Element Package. Technical Report. Department of Mathematics, Iowa State University 1996
[12] Park B. T., Petrosian V.: Fokker–Planck equations of stochastic acceleration: A study of numerical methods. Astrophys. J., Suppl. Ser. 103 (1996), 255–267
[13] Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T.: Numerical Recipes. Cambridge University Press, New York 1986 | MR | Zbl
[14] Risken H.: The Fokker–Planck Equation. Springer–Verlag, Berlin 1984 | MR | Zbl
[15] Schmidt G. C.: Designing nonlinear filters based on Daum’s theory. J. Guidance, Control and Dynamics 16 (1993), 371–376 | Zbl
[16] Sorenson H. W., Alspach D. L.: Recursive Bayesian estimation using Gaussian sums. Automatica 7 (1971), 465–479 | MR | Zbl
[17] Spencer B. F., Bergman L. A.: On the numerical solution of the Fokker–Planck equation for nonlinear stochastic systems. Nonlinear Dynamics 4 (1993), 357–372
[18] Spencer B. F., Wojtkiewicz S. F., Bergman L. A.: Some experiments with massively parallel computation for Monte Carlo simulation of stochastic dynamical systems. In: Proc. Second Internat. Conference on Computational Stochastic Mechanics, Athens 1994
[19] Šimandl M., Švácha J.: Nonlinear filters for continuous-time processes. In: Proc. 5th Internat. Conference on Process Control, Kouty nad Desnou 2002
[20] Šimandl M., Královec J.: Filtering, prediction and smoothing with Gaussian sum Rrpresentation. In: Proc. Symposium on System Identification. Santa Barbara 2000
[21] Šimandl M., Královec, J., Söderström T.: Anticipative grid design in point-mass approach to nonlinear state estimation. IEEE Trans. Automat. Control 47 (2002), 699–702 | MR
[22] Šimandl M., Královec, J., Söderström T.: Advanced point–mass method for nonlinear state estimation. Automatica 42 (2006), 1133–1145 | Zbl
[23] Šimandl M., Švácha J.: Separation approach for numerical solution of the Fokker–Planck equation in estimation problem. In: Preprints of 16th IFAC World Congress. Prague 2005
[24] Zhang D. S., Wei G. W., Kouri D. J., Hoffman D. K.: Numerical method for the nonlinear Fokker–Planck equation. Amer. Physical Society 56 (1997), 1197–1206
[25] Zorzano M. P., Mais, H., Vazquez L.: Numerical solution for Fokker–Planck equations in accelerators. Phys. D: Nonlinear Phenomena 113 (1998), 379–381 | Zbl