Keywords: optimal design; geometric approach; linear systems; discrete- time systems
@article{KYB_2008_44_1_a0,
author = {Zattoni, Elena},
title = {$H_2$-optimal rejection with preview: geometric constraints and dynamic feedforward solutions via spectral factorization},
journal = {Kybernetika},
pages = {3--16},
year = {2008},
volume = {44},
number = {1},
mrnumber = {2405051},
zbl = {1145.93334},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a0/}
}
TY - JOUR AU - Zattoni, Elena TI - $H_2$-optimal rejection with preview: geometric constraints and dynamic feedforward solutions via spectral factorization JO - Kybernetika PY - 2008 SP - 3 EP - 16 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a0/ LA - en ID - KYB_2008_44_1_a0 ER -
Zattoni, Elena. $H_2$-optimal rejection with preview: geometric constraints and dynamic feedforward solutions via spectral factorization. Kybernetika, Tome 44 (2008) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/KYB_2008_44_1_a0/
[1] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, NJ 1992 | MR | Zbl
[2] Bittanti S., Laub A. J., (eds.) J. C. Willems: The Riccati Equation. Springer-Verlag, Berlin – Heidelberg 1991 | MR | Zbl
[3] Chen J., Ren Z., Hara, S., Qiu L.: Optimal tracking performance: Preview control and exponential signals. IEEE Trans. Automat. Control 46 (2001), 10, 1647–1653 | MR | Zbl
[4] Clements D. J.: Rational spectral factorization using state-space methods. Systems Control Lett. 20 (1993), 335–343 | MR | Zbl
[5] Colaneri P., Geromel J. C., Locatelli A.: Control Theory and Design: An $RH_2$ and $RH_\infty $ Viewpoint. Academic Press, London 1997
[6] Grimble M. J.: Polynomial matrix solution to the standard $H_2$-optimal control problem. Internat. J. Systems Sci. 22 (1991), 5, 793–806 | MR
[7] Hoover D. N., Longchamp, R., Rosenthal J.: Two-degree-of-freedom $\ell _2$-optimal tracking with preview. Automatica 40 (2004), 1, 155–162 | MR | Zbl
[8] Hunt K. J., Šebek, M., Kučera V.: Polynomial solution of the standard multivariable $H_2$-optimal control problem. IEEE Trans. Automat. Control 39 (1994), 7, 1502–1507 | MR
[9] Imai H., Shinozuka M., Yamaki T., Li, D., Kuwana M.: Disturbance decoupling by feedforward and preview control. ASME J. Dynamic Systems, Measurements and Control 105 (1983), 3, 11–17 | Zbl
[10] Kojima A., Ishijima S.: LQ preview synthesis: Optimal control and worst case analysis. IEEE Trans. Automat. Control 44 (1999), 2, 352–357 | MR | Zbl
[11] Lancaster P., Rodman L.: Algebraic Riccati Equations. Oxford University Press, New York 1995 | MR | Zbl
[12] Marro G., Prattichizzo, D., Zattoni E.: A unified setting for decoupling with preview and fixed-lag smoothing in the geometric context. IEEE Trans. Automat. Control 51 (2006), 5, 809–813 | MR
[13] Marro G., Zattoni E.: ${H}_2$-optimal rejection with preview in the continuous-time domain. Automatica 41 (2005), 5, 815–821 | MR | Zbl
[14] Marro G., Zattoni E.: Signal decoupling with preview in the geometric context: exact solution for nonminimum-phase systems. J. Optim. Theory Appl. 129 (2006), 1, 165–183 | MR | Zbl
[15] Moelja A. A., Meinsma G.: $H_2$ control of preview systems. Automatica 42 (2006), 6, 945–952 | MR | Zbl
[16] Vidyasagar M.: Control System Synthesis: A Factorization Approach. The MIT Press, Cambridge, MA 1985 | MR | Zbl
[17] Šebek M., Kwakernaak H., Henrion, D., Pejchová S.: Recent progress in polynomial methods and polynomial toolbox for Matlab version 2. 0. In: Proc. 37th IEEE Conference on Decision and Control, Tampa 1998
[18] Willems J. C.: Feedforward control, PID control laws, and almost invariant subspaces. Systems Control Lett. 1 (1982), 4, 277–282 | MR | Zbl
[19] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer-Verlag, New York 1985 | MR | Zbl
[20] Yamada M., Funahashi, Y., Riadh Z.: Generalized optimal zero phase tracking controller design. Trans. ASME – J. Dynamic Systems, Measurement and Control 121 (1999), 2, 165–170
[21] Zattoni E.: Decoupling of measurable signals via self-bounded controlled invariant subspaces: Minimal unassignable dynamics of feedforward units for prestabilized systems. IEEE Trans. Automat. Control 52 (2007), 1, 140–143 | MR