Keywords: Willmore flow; method of lines; curvature minimization; gradient flow; Laplace–Beltrami operator; Gauss curvature; central differences; numerical viscosity
@article{KYB_2007_43_6_a9,
author = {Oberhuber, Tom\'a\v{s}},
title = {Finite difference scheme for the {Willmore} flow of graphs},
journal = {Kybernetika},
pages = {855--867},
year = {2007},
volume = {43},
number = {6},
mrnumber = {2388399},
zbl = {1140.53032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a9/}
}
Oberhuber, Tomáš. Finite difference scheme for the Willmore flow of graphs. Kybernetika, Tome 43 (2007) no. 6, pp. 855-867. http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a9/
[1] Beneš M.: Numerical solution for surface diffusion on graphs. In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University Fukuoka 2006, pp. 9–25 | MR
[2] Deckelnick K., Dziuk G.: Error estimates for the Willmore flow of graphs. Interfaces Free Bound. 8 (2006), 21–46 | DOI | MR
[3] Droske M., Rumpf M.: A level set formulation for Willmore flow. Interfaces Free Bound. 6 (2004), 3, 361–378 | DOI | MR | Zbl
[4] Du Q., Liu C., Ryham, R., Wang X.: A phase field formulation of the Willmore problem. Nonlinearity (2005), 18, 1249–1267 | MR | Zbl
[5] Du Q., Liu, C., Wang X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. (2004), 198, 450–468 | MR
[6] Dziuk G., Kuwert, E., Schätzle R.: Evolution of elastic curves in $\mathbb R\mathnormal ^n$: Existence and Computation. SIAM J. Math. Anal. 41 (2003), 6, 2161–2179 | MR
[7] Kuwert E., Schätzle R.: The Willmore flow with small initial energy. J. Differential Geom. 57 (2001), 409–441 | MR | Zbl
[8] Minárik V., Kratochvíl, J., Mikula K.: Numerical simulation of dislocation dynamics by means of parametric approach. In: Proc. Czech Japanese Seminar in Applied Mathematics (M. Beneš, J. Mikyška, and T. Oberhuber, eds.), Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague 2005, pp. 128–138
[9] Oberhuber T.: Computational study of the Willmore flow on graphs. Accepted to the Proc. Equadiff 11, 2005
[10] Oberhuber T.: Numerical solution for the Willmore flow of graphs. In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University Fukuoka, October 2006, ISSN 1881-4042, pp. 126–138 | MR | Zbl
[11] Simonett G.: The Willmore flow near spheres. Differential and Integral Equations 14 (2001), No. 8, 1005–1014 | MR | Zbl
[12] Willmore T. J.: Riemannian Geometry. Oxford University Press, Oxford 1997 | MR | Zbl