Keywords: two-phase flow; non-aqueous phase liquids (NAPL); control volume finite elements; capillary pressure parameters; Brooks–Corey model; plume sensitivity
@article{KYB_2007_43_6_a7,
author = {Miky\v{s}ka, Ji\v{r}{\'\i} and Illangasekare, Tissa H.},
title = {Application of a multiphase flow code for investigation of influence of capillary pressure parameters on two-phase flow},
journal = {Kybernetika},
pages = {831--840},
year = {2007},
volume = {43},
number = {6},
mrnumber = {2388397},
zbl = {1252.76087},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a7/}
}
TY - JOUR AU - Mikyška, Jiří AU - Illangasekare, Tissa H. TI - Application of a multiphase flow code for investigation of influence of capillary pressure parameters on two-phase flow JO - Kybernetika PY - 2007 SP - 831 EP - 840 VL - 43 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a7/ LA - en ID - KYB_2007_43_6_a7 ER -
%0 Journal Article %A Mikyška, Jiří %A Illangasekare, Tissa H. %T Application of a multiphase flow code for investigation of influence of capillary pressure parameters on two-phase flow %J Kybernetika %D 2007 %P 831-840 %V 43 %N 6 %U http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a7/ %G en %F KYB_2007_43_6_a7
Mikyška, Jiří; Illangasekare, Tissa H. Application of a multiphase flow code for investigation of influence of capillary pressure parameters on two-phase flow. Kybernetika, Tome 43 (2007) no. 6, pp. 831-840. http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a7/
[1] http, UG homepage.//: sit. iwr.uni-heidelberg.de/$\tilde{\ }$ug/
[2] Bastian P., Birken K., Lang S., Johannsen K., Neuß N., Rentz-Reichert, H., Wieners C.: UG: A flexible software toolbox for solving partial differential equations. Comput. and Visualization in Science 1 (1997), 27–40 | Zbl
[3] Bastian P., Johannsen, K., Reichenberger V.: UG Tutorial, 199.
[4] Beneš M., Fučík R., Mikyška, J., Illangasekare T. H.: Generalization of the benchmark solution for the two-phase flow. In: FEM_MODFLOW 2004 (K. Kovář, Z. Hrkal, and J. Bruthans, eds.), Karlovy Vary 2004, pp. 181–184
[5] Beneš M., Fučík R., Mikyška, J., Illangasekare T. H.: An improved semi-analytical solution for validation of numerical models of two-phase flow in porous media. Vadoze Zone Journal 6 (2007), 93–104 . ISSN 1539-1663
[6] Beneš M., Illangasekare T. H., Mikyška J.: On the numerical treatment of sharp texture transitions in two-phase flow. In: Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura, and T. Nakaki, eds.), COE Lecture Note Vol. 3, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan 2006, pp. 106–116. Available on-line at http://www.math.kyushu-u.ac.jp/ masato/cj/proceedings-CJ05.html | MR
[7] Beneš M., Stýblo M., Maryška, J., Mužák J.: The application of mathematical models of the transport of chemical substances in the remediation of consequences of the uranium mining. In: Proc. 3rd Workshop on Modelling of Chemical Reaction Systems, Heidelberg 1996, ISBN 3-932217-00-4
[8] Brooks R. H., Corey A. T.: Hydraulic properties of porous media. Colorado State University Hydrology Paper 3, Colorado State University 1964
[9] Buckley S. E., Leverett M. C.: Mechanism of fluid displacements in sands. Trans. AIME 146 (1942), 107–116
[10] Burdine N. T.: Relative Permeability Calculations from Pore-size Distribution Data. Technical Report, Petroleum Transaction, AIME, 1953
[11] Chen Z. X., Bodvarson G. S., Witherspoon P. A.: Comment on “exact integral solution for two-phase flow” by David B. McWhorter and Daniel K. Sunada. Water Resources Research 28 (1992), 5, 1477–1478 | DOI
[12] Forsyth P. A.: A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Statist. Comput. 12 (1991), 5, 1029–1057 | DOI | MR | Zbl
[13] Helmig R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer Verlag, Berlin 1997
[14] Huyakorn P. S., Pinder G. F.: Computational Methods in Subsurface Flow. Academic Press, New York 1983 | Zbl
[15] McWhorter D. B., Sunada D. K.: Exact integral solutions for two-phase flow. Water Resources Research 26 (1990), 3, 399–413 | DOI
[16] McWhorter D. B., Sunada D. K.: Reply. Water Resources Research 28 (1992), 5, 1479 | DOI
[17] Mikyška J.: Numerical Model for Simulation of Behaviour of Non-Aqueous Phase Liquids in Heterogeneous Porous Media Containing Sharp Texture Transitions. PhD Thesis, Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Prague 2005
[18] Straka R.: Numerical simulation of reaction-diffusion dynamics. In: Proc. Czech Japanese Seminar in Applied Mathematics (M. Beneš, J. Mikyška, and T. Oberhuber, eds.), Czech Technical University in Prague 2005
[19] Turner A. D.: Behavior of Dense Non-aqueous Phase Liquids at Soil Interfaces of Heterogeneous Formations: Experimental Methods and Physical Model Testing. Master’s Thesis, Colorado School of Mines, Golden, Colorado 2004
[20] Vorst H. A. van der: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Statist. Comput. 13 (1992), 631–644 | DOI | MR