Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs
Kybernetika, Tome 43 (2007) no. 6, pp. 807-815 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We deal with numerical computation of the nonlinear partial differential equations (PDEs) of Black–Scholes type which incorporate the effect of transaction costs. Our proposed technique surmounts the difficulty of infinite domains and unbounded values of the solutions. Numerical implementation shows the validity of our scheme.
We deal with numerical computation of the nonlinear partial differential equations (PDEs) of Black–Scholes type which incorporate the effect of transaction costs. Our proposed technique surmounts the difficulty of infinite domains and unbounded values of the solutions. Numerical implementation shows the validity of our scheme.
Classification : 35K15, 65M99, 91B28
Keywords: transaction costs; nonlinear partial differential equation; numerical computation
@article{KYB_2007_43_6_a5,
     author = {Imai, Hitoshi and Ishimura, Naoyuki and Sakaguchi, Hideo},
     title = {Computational technique for treating the nonlinear {Black-Scholes} equation with the effect of transaction costs},
     journal = {Kybernetika},
     pages = {807--815},
     year = {2007},
     volume = {43},
     number = {6},
     mrnumber = {2388395},
     zbl = {1213.91160},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a5/}
}
TY  - JOUR
AU  - Imai, Hitoshi
AU  - Ishimura, Naoyuki
AU  - Sakaguchi, Hideo
TI  - Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs
JO  - Kybernetika
PY  - 2007
SP  - 807
EP  - 815
VL  - 43
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a5/
LA  - en
ID  - KYB_2007_43_6_a5
ER  - 
%0 Journal Article
%A Imai, Hitoshi
%A Ishimura, Naoyuki
%A Sakaguchi, Hideo
%T Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs
%J Kybernetika
%D 2007
%P 807-815
%V 43
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a5/
%G en
%F KYB_2007_43_6_a5
Imai, Hitoshi; Ishimura, Naoyuki; Sakaguchi, Hideo. Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs. Kybernetika, Tome 43 (2007) no. 6, pp. 807-815. http://geodesic.mathdoc.fr/item/KYB_2007_43_6_a5/

[1] Black F., Scholes M.: The pricing of options and corporate liabilities. J. Political Economy 81 (1973), 637–659 | DOI | Zbl

[2] Boyle P. P., Vorst T.: Option replication in discrete time with transaction costs. J. Finance 47 (1992), 271–293 | DOI

[3] Dewynne J. N., Whalley A. E., Wilmott P.: Path-dependent options and transaction costs. In: Mathematical Models in Finance (S. D. Howison, F. P. Kelly, and P. Wilmott, eds.), Chapman and Hall, London 1995, pp. 67–79 | Zbl

[4] Hoggard T., Whalley A. E., Wilmott P.: Hedging option portfolios in the presence of transaction costs. Adv. in Futures and Options Res. 7 (1994), 21–35

[5] Hull J.: Options, Futures, and Other Derivatives. Fourth edition. Prentice-Hall, New Jersey 2000 | Zbl

[6] Imai H.: Some methods for removing singularities and infinity in numerical simulations. In: Proc. Third Polish–Japanese Days on Mathematical Approach to Nonlinear Phenomena: Modeling, Analysis and Simulations (T. Aiki, N. Kenmochi, M. Niezgódka and M. Ôtani, eds.), Gakuto, Tokyo 2005, pp. 103–118 | MR

[7] Imai H., Ishimura N., Mottate, I., Nakamura M. A.: On the Hoggard–Whalley–Wilmott equation for the pricing of options with transaction costs. Asia–Pacific Financial Markets 13 (2007), 315–326 | DOI

[8] Ishimura N.: Remarks on the nonlinear partial differential equations of Black–Scholes type with transaction costs. preprint. Submitted

[9] Jandačka M., Ševčovič D.: On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. J. Appl. Math. 3 (2005), 235–258 | DOI | MR | Zbl

[10] Kwok Y.: Mathematical Models of Financial Derivatives. Springer, New York 1998 | MR | Zbl

[11] Leland H. E.: Option pricing and replication with transaction costs. J. Finance 40 (1985), 1283–1301 | DOI

[12] Merton R. C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4 (1973), 141–183 | DOI | MR

[13] Wilmott P.: Paul Wilmott on Quantitative Finance, Vol. I, II. Wiley, New York 2000

[14] Wilmott P., Howison, S., Dewynne J.: The Mathematics of Financial Derivatives. Cambridge University Press, Cambridge 1995 | MR | Zbl